Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T12:45:05.900Z Has data issue: false hasContentIssue false

Experimental and molecular genetic analysis of the impact of pyrethroid and non-pyrethroid insecticide impregnated bednets for mosquito control in an area of pyrethroid resistance

Published online by Cambridge University Press:  09 March 2007

J.H. Kolaczinski*
Affiliation:
London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK Institut Pierre Richet, BP 1500, Bouaké, Côte d'Ivoire
C. Fanello
Affiliation:
London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
J.-P. Hervé
Affiliation:
Institut Pierre Richet, BP 1500, Bouaké, Côte d'Ivoire
D.J. Conway
Affiliation:
London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
P. Carnevale
Affiliation:
Institut Pierre Richet, BP 1500, Bouaké, Côte d'Ivoire
C.F. Curtis
Affiliation:
London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
*
*Fax: +44 (0)20 7467 9536 E-mail: [email protected]

Abstract

Experimental huts in Côte d’Ivoire were used to evaluate the pyrethroid alpha-cypermethrin, the non-ester pyrethroid etofenprox, the organophosphate pirimiphos-methyl and the carbamate carbosulfan on bednets against pyrethroid-resistant Anopheles gambiae Giles. To test for selection for the resistance gene by the treated nets, A. gambiae collected live or dead from the huts were kept and analysed for the presence of the kdr gene using a new polymerase chain reaction followed by sequence-specific oligonucleotide probing (PCR–SSOP) for kdr-genotyping. Deliberately holed bednets freshly treated with pirimiphos-methyl or carbosulfan caused over 90% kill of A. gambiae s.s. and Culex spp. However, the mortality with alpha-cypermethrin or etofenprox treated nets was similar to that with untreated nets. Bloodfeeding of A. gambiae s.s. on the sleepers under the nets was only significantly reduced by alpha-cypermethrin and carbosulfan. Tests of the residual activity of the bednets after seven months showed that pirimiphos-methyl had lost its efficacy while carbosulfan still performed well. Once again the pyrethroid treated nets gave similar results to the untreated nets. Selection for the kdr-allele by alpha-cypermethrin and etofenprox, but not by carbosulfan, was indicated by PCR–SSOP genotyping of mosquitoes. Thus carbamates such as carbosulfan, or organophosphates of longer persistence than pirimiphos-methyl and of low mammalian toxicity, would seem to be a promising alternative to be used on bednets, particularly in areas of pyrethroid resistance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chandre, F., Darriet, F., Doannio, J.M.C., Rivière, F., Pasteur, N. & Guillet, P. (1997) Distribution of organophosphate and carbamate resistance in Culex pipiens quinquefasciatus (Diptera: Culicidae) in West Africa. Journal of Medical Entomology 34, 664671.CrossRefGoogle ScholarPubMed
Chandre, F., Darriet, F., Darder, M., Cuany, A., Doannio, J.M.C., Pasteur, N. & Guillet, P. (1998) Pyrethroid resistance in Culex quinquefasciatus from West Africa. Medical and Veterinary Entomology 12, 359366.CrossRefGoogle ScholarPubMed
Chandre, F., Darriet, F., Manga, L., Akogbeto, M., Faye, O., Mouchet, J. & Guillet, P. (1999 a) Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bulletin of the World Health Organization 77, 230234.Google ScholarPubMed
Chandre, F., Darriet, F., Manguin, S., Brengues, C., Carnevale, P. & Guillet, P. (1999 b) Pyrethroid cross resistance spectrum among populations of Anopheles gambiae s.s. from Côte d'Ivoire. Journal of the American Mosquito Control Association 15, 5359.Google ScholarPubMed
Collins, F.H., Mendez, M.A., Rasmussen, M.O., Mehaffey, P.C., Besansky, N.J. & Finnerty, V. (1987) A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. American Journal of Tropical Medicine and Hygiene 37, 3741.CrossRefGoogle ScholarPubMed
Crawley, M.J. (1993) GLIM for ecologists. 379 pp. Oxford, Blackwell Scientific Publications.Google Scholar
Curtis, C.F. (1993) Workshop on bednets at the International Congress of Tropical Medicine. Japanese Journal of Sanitary Zoology 44, 6568.Google Scholar
Curtis, C.F., Hill, N., Ulloa, M. & Magesa, S. (1990) The possible impact of resistance on the effectiveness of pyrethroid-impregnated bednets. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 455.Google Scholar
Curtis, C.F., Myamba, J. & Wilkes, T.J. (1996) Comparison of different insecticides and fabrics for anti-mosquito bednets and curtains. Medical and Veterinary Entomology 10, 111.CrossRefGoogle ScholarPubMed
Curtis, C.F., Miller, J.E., Hodjati, M.H., Kolaczinski, J.H. & Kasumba, I. (1998 a) Can anything be done to maintain the effectiveness of pyrethroid-impregnated bednets against malaria vectors? Philosophical Transactions of the Royal Society of London B 353, 17691775.CrossRefGoogle ScholarPubMed
Curtis, C.F., Maxwell, C.A., Finch, R.J. & Njunwa, K.J. (1998 b) A comparison of use of a pyrethroid either for house spraying or for bednet treatment against malaria vectors. Tropical Medicine and International Health 3, 619631.CrossRefGoogle ScholarPubMed
Darriet, F. (1998) La lutte contre les moustiques nuisants et vecteurs de maladies. 114 pp. Karthala-ORSTOM Editions, ISBN: 2-86537-864-0.Google Scholar
Darriet, F., Guillet, P., Chandre, F., Guessan, R.N., Doannio, J.M.C., Rivière, F. & Carnevale, P. (1997) Présence et évolution de la résistance aux pyrethrinoides et au DDT chez deux populations d'Anopheles gambiae s.s. d'Afrique de l'Ouest. WHO/CTD/VBC/97.1001.Google Scholar
Darriet, F., Guillet, P., N'Guessan, R.N., Doannio, J.M.C., Koffi, A.A., Konan, L.Y. & Carnevale, P. (1999) The impact of permethrin and deltamethrin resistance in Anopheles gambiae s.s. on the efficacy of insecticide-treated mosquito nets. WHO/VBC 99.1002.Google Scholar
Elissa, N., Mouchet, J., Rivière, F., Meunier, J.-Y. & Yao, K. (1993) Resistance of Anopheles gambiae s.s. to pyrethroids in Côte d'Ivoire. Annales de la Société Belge de Médécine Tropicale 73, 291294.Google ScholarPubMed
Fanello, C., Kolaczinski, J., Conway, D., Carnevale, P. & Curtis, C.F. (1999) The kdr pyrethroid resistance gene in Anopheles gambiae: test of non-pyrethroid insecticides and improvement of the detection method for the gene. Parassitologia 41, 323326.Google Scholar
Guillet, P. (1998) Implications of knock-down resistance (kdr) development on the use of impregnated bednets. pp. 4548 in Report of 1st Meeting of Global Collaboration for Development of Pesticides for Public Health, 14th–15th of October 1998. CTD/WHOPES/GCDPP/98.1. World Health Organization, Geneva.Google Scholar
Hemingway, J. (1995) Efficacy of etofenprox against insecticide susceptible and resistant mosquito strains containing characterised resistance mechanisms. Medical and Veterinary Entomology 9, 423426.CrossRefGoogle Scholar
Hossain, M.I., Curtis, C.F. & Heekin, J.P. (1989) Assays of permethrin-impregnated fabrics and bioassays with mosquitoes (Diptera: Culicidae). Bulletin of Entomological Research 79, 299308.CrossRefGoogle Scholar
Jana-Kara, B.R., Jihullah, W.A., Shahi, B., Dev, V., Curtis, C.F. & Sharma, V.P. (1995) Deltamethrin impregnated bednets against Anopheles minimus transmitted malaria in Assam, India. Journal of Tropical Medicine and Hygiene 98, 7383.Google ScholarPubMed
Jawara, M., McBeath, J., Lines, J.D., Pinder, M., Sanyang, F. & Greenwood, B.M. (1998) Comparison of bednets treated with alphacypermethrin, permethrin or lambdacyhalothrin against Anopheles gambiae in The Gambia. Medical and Veterinary Entomology 12, 6066.CrossRefGoogle ScholarPubMed
Lengeler, C. (1998) Insecticide treated bednets and curtains for malaria control (Cochrane Review). in The Cochrane Library, Issue 3. Oxford, Update Software.CrossRefGoogle Scholar
Luo, D., Lu, D., Yao, R., Li, P., Huo, X., Li, A., Wen, L., Ge, C., Zhang, S. & Huo, H. (1994) Alphamethrin-impregnated bed nets for malaria and mosquito control in China. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 625628.Google ScholarPubMed
Magesa, S.M., Wilkes, T.J., Mnzava, A.E.P., Njunwa, K.J., Myamba, J., Kivuyo, M.D.P., Hill, N., Lines, J.D. & Curtis, C.F. (1991) Trial of pyrethroid impregnated bednets in an area of Tanzania holoendemic for malaria: Part 2. Effects on the malaria vector population. Acta Tropica 49, 97108.CrossRefGoogle Scholar
Magnin, M., Marboutin, E. & Pasteur, N. (1988) Insecticide resistance in Culex quinquefasciatus (Diptera: Culicidae) in West Africa. Journal of Medical Entomology 25, 99104.CrossRefGoogle ScholarPubMed
Malcolm, C.A. (1988) Current status of pyrethroid resistance in anophelines. Parasitology Today 4, S13S15.CrossRefGoogle ScholarPubMed
Martinez-Torres, D., Chandre, F., Williamson, M.S., Darriet, F., Bergé, J.B., Devonshire, A.L., Guillet, P., Pasteur, N. & Pauron, D. (1998) Molecular characterisation of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Molecular Biology 7, 179184.CrossRefGoogle ScholarPubMed
Miller, J.E. & Gibson, G. (1994) Behavioural response of host-seeking mosquitoes (Diptera: Culicidae) to insecticide-impregnated bed netting: a new approach to insecticide bioassays. Journal of Medical Entomology 31, 114126.CrossRefGoogle Scholar
Miller, J.E., Lindsay, S.W. & Armstrong, J.R.M. (1991) Experimental hut trials of bednets impregnated with synthetic pyrethroid or organophosphate insecticides for mosquito control in The Gambia.. Medical and Veterinary Entomology 5, 465476.CrossRefGoogle ScholarPubMed
Pates, H.V. & Curtis, C.F. (in press) Mosquito behaviour in relation to control. Ch. 12 in Costantini, C. (Ed.) Mosquito Behaviour.Google Scholar
Pleass, R.J., Armstrong, J.R.M., Curtis, C.F., Jawara, M. & Lindsay, S.W. (1993) Comparison of permethrin treatments for bednets in The Gambia. Bulletin of Entomological Research 83, 133140.CrossRefGoogle Scholar
Sawicki, R.M. (1978) Unusual response of DDT-resistant houseflies to carbinol analogues of DDT. Nature 275, 443444.CrossRefGoogle ScholarPubMed
Tippe, A. (1993) Sind Pyrethroide unbedenklich? Zur Bewertung experimenteller Befunde. Zentralblatt für Hygiene und Umweltmedizin 194, 342359.Google Scholar
Tomlin, C. (1994) The pesticide manual. 1341 pp. British Crop Protection Council, Farnham, UK and The Royal Society of Chemistry, Cambridge, UK.Google Scholar
Weerasooriya, M.V., Munasinghe, C.S., Mudalige, M.P.S., Curtis, C.F. & Samarawickrema, W.A. (1996) Comparative efficacy of house curtains impregnated with permethrin, lambdacyhalothrin or bendiocarb against the vector of bancroftian filariasis, Culex quinquefasciatus, in Matara, Sri Lanka. Transactions of the Royal Society of Tropical Medicine and Hygiene 90, 103104.CrossRefGoogle ScholarPubMed
Zimicki, S. (1996) Promotion in sub-Saharan Africa. pp. 129174in Lengeler, C., Cattani, J. & de Savigny, D. (Eds) Net gain. Ottawa, Canada, International Development Research Centre, Geneva, Switzerland, and World Health Organization.Google Scholar