Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T05:26:16.511Z Has data issue: false hasContentIssue false

Effects of heat stress on the quality of Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae)

Published online by Cambridge University Press:  09 May 2014

De S. Wang
Affiliation:
Department of Entomology, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
Yu R. He*
Affiliation:
Department of Entomology, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
Wei Zhang
Affiliation:
Department of Entomology, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
Xiao G. Nian
Affiliation:
Department of Entomology, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
Tao Lin
Affiliation:
Department of Entomology, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
Rui Zhao
Affiliation:
Department of Entomology, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
*
*Author for correspondence Phone: +0086 020 85283985 E-mail: [email protected]

Abstract

Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae) is an important natural enemy of many species of lepidopterous pests. The effects of heat stress temperature (33, 36, and 39 °C), duration of exposure (2, 4, 6, and 8 h), and developmental stage during exposure (embryo-first instar larvae, second instar larvae, prepupae, and pupae) on the development and reproduction of parasitoid T. bactrae were investigated in the laboratory. When exposed to 39 °C for 8 h during pupal stage, only 19.90% adults emerged from host eggs, and more than 14% were deformed (wings were folded or incomplete). Parasitoid females exposed to 39 °C for 8 h as prepupae only lived for 1.45 days and parasitized about 23.5 host eggs. Moreover, life-table parameters of T. bactrae were also influenced by exposure to heat stress temperatures during each preimaginal developmental stage. Based on these results, we propose that T. bactrae is susceptible to high temperatures, especially at 39 °C. Thus, this parasitoid may be more effectively controlling lepidopterous pests during cooler weather conditions.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, D.H., Pertoldi, C., Scali, V. & Loeschcke, V. (2005) Heat stress and age induced maternal effects on wing size and shape in parthenogenetic Drosophila mercatorum. Journal of Evolutionary Biology 18, 884892.CrossRefGoogle ScholarPubMed
Arbogast, R.T. (1981) Mortality and reproduction of Ephestia cautella and Plodia interpunctella exposed as pupae to high temperature. Environmental Entomology 10, 708711.CrossRefGoogle Scholar
Armstrong, J.Y. (1992) Fruit fly disinfestations strategies beyond methyl bromide. New Zealand Journal of Crop Science and Horticultural Science 20, 181193.Google Scholar
Bayram, A., Salerno, G., Onofri, A. & Conti, E. (2010) Lethal and sublethal effects of preimaginal treatments with two pyrethroids on the life history of the egg parasitoid Telenomus busseolae. BioControl 55, 697710.CrossRefGoogle Scholar
Chen, K.W., Liu, L.Z., Fang, C.M. & Huang, S.S. (2004) Effect of cold storage on mass-rearing population quality of Trichogrammatoidea bactrae. Journal of South China Agricultural University 25, 5659.Google Scholar
Chen, K.W., He, Y.R., Lu, Y.Q., Lu, X. & Huang, S.S. (2005) Effect of temperature on the population parameters of Trichogrammatoidea bactrae Nagaraja. Acta Ecologica Sinica 25, 7377.Google Scholar
Chihrane, J. & Laugé, G. (1996) Loss of parasitization efficiency of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) under high-temperature conditions. Biological Control 7, 9599.CrossRefGoogle Scholar
Chihrane, J. & Laugé, G. (1997) Thermosensitivity of germ lines of Trichogramma brassicae Bezdenko (Hymenoptera). Implications for efficacy of the parasitoid. Canadian Journal of Zoology 75, 484489.CrossRefGoogle Scholar
Chihrane, J., Laugé, G. & Hawlitzky, N. (1993) Effects of high temperature shocks on the development and biology of Trichogramma brassicae (Hymenoptera: Trichogammatidae). Entomophaga 38, 185192.CrossRefGoogle Scholar
Cui, X., Wan, F., Xie, M. & Liu, T. (2008) Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science 8, 110.CrossRefGoogle Scholar
Dastjerdi, H.R., Hejazi, M.J., Ganbalani, G.N. & Saber, M. (2009) Sublethal effects of some conventional and biorational insecticides on ectoparasitoid, Habrobracon hebetor Say (Hymenoptera: Braconidae). Journal of Entomology 6, 8289.CrossRefGoogle Scholar
Denlinger, D.L. & Yocum, G.D. (1998) Physiology of heat sensitivity. pp. 754in Hallman, G.J. & Denlinger, D.L. (Eds) Temperature Sensitivity in Insects and Application in Integrated Pest Management. Boulder, Westview Press.Google Scholar
Denlinger, D.L., Joplin, K.H., Chen, C.P. & Lee, R.E. (1991) Cold shock and heat shock. pp. 131148in Lee, R.E., & Denlinger, D.L. (Eds) Insects at Low Temperature. New York, Chapman and Hall.CrossRefGoogle Scholar
Dutton, A., Cerutti, F. & Bigler, F. (1996) Quality and environmental factors affecting T richogramma brassicae efficiency under field conditions. Entomologia Experimentalis et Applicata 81, 7179.CrossRefGoogle Scholar
Easterling, D.R., Evans, J.L., Groisman, P.Y., Karl, T.R., Kunkel, K.E. & Ambenje, P. (2000) Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society 81, 417425.2.3.CO;2>CrossRefGoogle Scholar
Guo, M.F., Zhu, D.F. & Li, L.Y. (1999) Selection of Trichogramma species for controlling the diamondback moth, Plutella xylostella (L.). Entomologia Sinica 6, 187192.Google Scholar
Hance, T., van Baaren, J., Vernon, P. & Boivin, G. (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology 52, 107126.CrossRefGoogle Scholar
Hansen, J.D. (1992) Heating curve models of quarantine treatments against insect pests. Journal of Economic Entomology 85, 18461854.CrossRefGoogle Scholar
Hansen, J., Sato, M. & Ruedy, R. (2012) Perception of climate change. Proceedings of the National Academy of Sciences of the United States of America 109, 24152423.Google ScholarPubMed
Hoffmann, A.A., Chown, S.L. & Clusella-Trullas, S. (2013) Upper thermal limits in terrestrial ectotherms: how constrained are they? Functional Ecology 27, 934949.CrossRefGoogle Scholar
Huang, S.S., Chen, K.W. & Shen, S.P. (2002) Natural increase of parasitoids population of diamondback moth Plutella xylostella under ecological control condition. Chinese Journal of Applied Ecology 13, 14491451.Google ScholarPubMed
Ismaeil, I., Doury, G., Desouhant, E., Dubois, F., Prevost, G. & Couty, A. (2013) Trans-generational effects of mild heat stress on the life history traits of an aphid parasitoid. PLoS ONE 8, 19.CrossRefGoogle ScholarPubMed
Jørgensen, K.T., Sørensen, J.G. & Bundgaard, J. (2006) Heat tolerance and the effect of mild heat stress on reproductive characters in Drosophila buzzatii males. Journal of Thermal Biology 31, 280286.CrossRefGoogle Scholar
Krebs, R.A. & Loeschcke, V. (1994) Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. Journal of Evolutionary Biology 7, 3949.CrossRefGoogle Scholar
Lin, N.Q. (1994) Systematic studies of Chinese Trichogrammatidae (Hymenoptera: Chalcidoidea). Fuzhou, Fujian, China, Fujian Science and Technology Publishing House Press.Google Scholar
Liu, S.S., Cooper, L., Llewellyn, R.R., Elson-Harris, M., Duff, J., Furlong, M.J. & Zalucki, M.P. (2004) Egg parasitoids of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), from south-east Queensland. Australian Journal of Entomology 43, 201207.CrossRefGoogle Scholar
Liu, Y.H. & Tsai, J.H. (2002) Effect of temperature on development, survivorship, and fecundity of Lysiphlebia mirzai (Hymenoptera: Aphidiidae), a parasitoid of Toxoptera citricida (Homoptera: Aphididae). Environmental Entomology 31, 418424.CrossRefGoogle Scholar
Ma, C.S., Hau, B. & Poehling, H.M. (2003) Effects of pattern and timing of high temperature exposure on reproduction of the rose grain aphid, Metopolophium dirhodum. Entomologia Experimentalis et Applicata 110, 6571.CrossRefGoogle Scholar
Mahroof, R., Subramanyam, B. & Flinn, P. (2005 a) Reproductive performance of Tribolium castaneum (Coleopera: Tenebrionidae) exposed to the minimum heat temperature as pupae and adults. Journal of Economic Entomology 98, 626633.CrossRefGoogle Scholar
Mahroof, R., Zhu, K.Y. & Subramanyam, B. (2005 b) Changes in expression of heat shock proteins in Tribolium castaneum (Coleopera: Tenebrionidae) in relation to developmental stage, exposure time, and temperature. Annals of the Entomological Society of America 98, 100107.CrossRefGoogle Scholar
Maisonhaute, C., Chihrane, J. & Laugé, G. (1999) Induction of thermotolerance in Trichogramma brassicae (Hymenoptera: Trichogrammatidae). Environmental Entomology 28, 116122.CrossRefGoogle Scholar
Malmendal, A., Overgaard, J., Bundy, J.G., Sørensen, J.G., Nielsen, N.C., Loeschcke, V. & Holmstrup, M. (2006) Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 291, 205212.CrossRefGoogle ScholarPubMed
Miller, J.G. & Gerth, W.J. (1994) Temperature-dependent development of Aphidius matricariae (Hymenoptera: Aphidiidae), as a parasitoid of Russian wheat aphid. Environmental Entomology 23, 13041307.CrossRefGoogle Scholar
Mironidis, G.K. & Savopoulou-Soultani, M. (2010) Effects of heat shock on survival and reproduction Helicoverpa armigera (Lepidoptera: Noctuidae) adults. Journal of Thermal Biology 35, 5969.CrossRefGoogle ScholarPubMed
Nadeem, S. & Hamed, M. (2008) Comparative development and parasitization of Trichogramma chilonis Ishii and Trichogrammatoidea bactrae Nagaraja under different temperature conditions. Pakistan Journal of Zoology 40, 431434.Google Scholar
Naranjo, S.E. (1993) Life history of Trichogrammatoidea bactrae (Hymenoptera: Trichogrammatidae), an egg parasitoid of pink bollworm (Lepidoptera: Gelechiidae), with emphasis on performance at high temperatures. Environmental Entomology 22, 10511059.CrossRefGoogle Scholar
Ramesh, B. & Baskaran, P. (1996) Developmental response of four species of Trichogramma (Hymenoptera: Trichogrammatidea) to heat shocks. Entomophaga 41, 267277.CrossRefGoogle Scholar
Rinehart, J.P., Yocum, G.D. & Denlinger, D.L. (2000) Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiological Entomology 25, 330336.CrossRefGoogle Scholar
Roux, O., Le Lann, C., van Alphen, J.J.M. & van Baaren, J. (2010) How does heat shock affect the life history traits of adults and progeny of the aphid parasitoid Aphidius avenae (Hymenoptera: Aphidiidae)? Bulletin of Entomological Research 100, 543549.CrossRefGoogle ScholarPubMed
Saxena, B.P., Sharma, P.R., Thappa, R.K. & Tikku, K. (1992) Temperature induced sterilization for control of three stored grain beetles. Journal of Stored Products Research 28, 6770.CrossRefGoogle Scholar
Scott, M., Berrigan, D. & Hoffmann, A.A. (1997) Cost and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomologia Experimentalis et Applicata 85, 211219.CrossRefGoogle Scholar
Silbermann, R. & Tatar, M. (2000) Reproductive costs of heat shock protein in transgenic Drosophila melanogaster. Evolution 54, 20382045.Google ScholarPubMed
Sisodia, S. & Singh, B.N. (2006) Effect of exposure to short-term heat stress on survival and fecundity in Drosophila ananassae. Canadian Journal of Zoology 84, 895899.CrossRefGoogle Scholar
Speight, M.R., Hunter, M.D. & Watt, A.D. (1999) Ecology of Insects – Concepts and Applications. Oxford, Blackwell Science, p. 351.Google Scholar
Stinner, R.E. (1977) Efficacy of inundative releases. Annual Review of Entomology 22, 515531.CrossRefGoogle Scholar
Terblanche, J.S., Hoffmann, A.A., Mitchell, K.A., Rako, L., le Roux, P.C. & Chown, S.L. (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology 214, 37133725.CrossRefGoogle ScholarPubMed
Tian, H.X. & Lin, N.Q. (2009) The genus Trichogrammatoidea Girault from Hainan, with description of a new species (Hymenoptera: Trichogrammatidae). Acta Zootaxonomica Sinica 34, 360366.Google Scholar
Tillman, P.G. & Powell, J.E. (1991) Developmental time in relation to temperature for Microplitis creceipes, M. Demolitor, Cotesia kazak (Hymenoptera: Icheumonidae), endoparasitoids of the tobacco budworm (Lepidoptera: Noctuidae). Environmental Entomology 20, 6164.CrossRefGoogle Scholar
Vasquez, L.A., Shelton, A.M., Hoffmann, M.P. & Roush, R.T. (1997) Laboratory evaluation of commercial trichogrammatid products for potential use against Plutella xylostella (L.) (Lepidoptera: Plutellidae). Biological Control 9, 143148.CrossRefGoogle Scholar
Wang, D.S., He, Y.R., Guo, X.L. & Luo, Y.L. (2012) Acute toxicities and sublethal effects of some conventional insecticides on Trichogramma chilonis (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology 105, 11571163.CrossRefGoogle Scholar
Wuhrer, B.G. & Hassan, S.A. (1993) Selection of effective species/strains of Trichogramma (Hym., Trichogrammatidae) to control the diamondback moth Plutella xylostella L. (Lep., Plutellidae). Journal of Applied Entomology 116, 8089.CrossRefGoogle Scholar
Xie, Q., Hou, B. & Zhang, R. (2008) Thermal responses of oriental fruit fly (Diptera: Tephritidae) late third instars: mortality, puparial morphology, and adult emergence. Journal of Economic Entomology 101, 736741.CrossRefGoogle ScholarPubMed