Hostname: page-component-5f745c7db-2kk5n Total loading time: 0 Render date: 2025-01-06T06:18:37.411Z Has data issue: true hasContentIssue false

The effect of host nutritional quality on multiple components of Trichogramma brassicae fitness

Published online by Cambridge University Press:  24 May 2016

H. Kishani Farahani*
Affiliation:
Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
A. Ashouri
Affiliation:
Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
A. Zibaee
Affiliation:
Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
P. Abroon
Affiliation:
Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
L. Alford
Affiliation:
Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
*
*Author for correspondence Phone: +98 9122054324 Fax: +98 2188303731 E-mail: [email protected]

Abstract

For parasitoids, the host represents the sole source of nutrients for the developing immature. Subsequently, host quality is an important factor affecting immature development and the resulting fitness of the emerging parasitoid, with impacts on fecundity, longevity and offspring sex ratio. Host age is an integral component of host quality and a key factor in host selection by the female parasitoid. The current study aimed to investigate the effect of decreasing host quality (determined by increasing host age) on adult life history traits (size, wing loading, longevity, and fecundity) and nutritional reserves (protein, lipid and glycogen concentrations) of the parasitoid Trichogramma brassicae. Higher quality hosts resulted in the production of larger offspring with increased resource reserves and enhanced mobility. One-day-old eggs contained significantly more protein and triglyceride than 25- and 45–day-old eggs. Quality of host and fitness of reared wasps decreased due to host aging. Parasitoids reared on 1-day-old hosts were larger, with greater fecundity and longevity, a reduced wind loading index, and produced a higher proportion of female offspring when compared with those reared on 25- and 45-day-old hosts. In addition, wasps reared on 1-day-old hosts contained higher energy resources, as determined by triglyceride, glycogen and protein reserves, which are essential to successful offspring production. One-day-old hosts can therefore be considered as the best age for producing wasps with greater fitness, since they contain the highest amount of protein, glycogen, and triglyceride. This has implications for the mass rearing of T. brassicae and enhancing the efficacy of this biological control agent.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrese, E.L. & Soulages, J.L. (2010) Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 55, 207225.CrossRefGoogle ScholarPubMed
Athenstaedt, K. & Daum, G. (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cellular and Molecular Life Sciences 63, 13551369.CrossRefGoogle ScholarPubMed
Barrett, M. & Schmidt, J.M. (1991) A comparison between the amino acid composition of an egg parasitoid wasp and some of its hosts. Entomologia Experimentalis et Applicata 59, 2941.CrossRefGoogle Scholar
Bauerfeind, S. & Fischer, K. (2005) Effects of adult-derived carbohydrates, amino acids and micronutrients on female reproduction in a fruit-feeding butterfly. Journal of Insect Physiology 51, 545554.CrossRefGoogle Scholar
Beckage, N.E. & Gelman, D.B. (2004) Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annual Review of Entomology 49, 299330.CrossRefGoogle ScholarPubMed
Benoit, M. & Voegelé, J. (1979) Choix de l'hoˆte et comportement trophique de Trichogramma evanescens Westw. (Hym., Trichogrammatidae) en fonction du developpement embryonnaire d'Ephestia kuehniella Zell. et d'Ostrinia nubilalis Hubner (Lep., Pyralidae). Entomophaga 24, 199207.CrossRefGoogle Scholar
Berrigan, D. (1991) Lift production in the flesh fly Neobellieria (=Sarcophaga) bullata Parker. Functinal Ecology 5, 448456.CrossRefGoogle Scholar
Beukeboom, L.W. & Van de Zande, L. (2010) Genetics of sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea). Journal of Genetics 89(3), 333339.CrossRefGoogle ScholarPubMed
Bigler, F., Babendreier, D. & Van Lenteren, J.C. (2010) Risk assessment and non-target effects of egg parasitoids in biological control. pp. 413442 in Parra, J.R.P., Consoli, F., Zucchi, R.A. (Eds) Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma, The Netherlands, Dordrecht, Springer.Google Scholar
Brand, A.M., Van Dijken, M.J., Kole, M. & Van Lenteren, J.C. (1984) Host age and host-species selection of three strains of Trichogramma evanescens Westwood, an egg parasite of several lepidopteran species. Mededelingen Faculteit Landbouwwetenschappen. Rijksuniversiteit Gent 49(3), 839847.Google Scholar
Brodeur, J. & Boivin, G. (2004) Functional ecology of immature parasitoids. Annual Review of Entomology 49, 2749.CrossRefGoogle ScholarPubMed
Calvin, D.D., Losey, J.E., Knapp, M.C. & Poston, F.L. (1997) Oviposition and development of Trichogramma pretiosum (Hym., Trichogrammatidae) in three age classes of southwestern corn borer eggs. Environmental Entomology 26(2), 385390.CrossRefGoogle Scholar
Chapman, R.F. (2012) The insects: structure and function. p. 929 in Simpson, S.J., Douglas, A.E., editors. Alimentary Canal, Digestion and Absorption. 5th edn. New York (NY), Cambridge University Press.Google Scholar
Chong, J.H. & Oetting, R.D. (2006) Host stage selection of the mealy bug parasitoid Anagyrus spec. nov near sinope. Entomologia Experimentalis et Applicata 121, 3950.CrossRefGoogle Scholar
Chun, Y. & Yin, Z.D. (1998) Glycogen assay for diagnosis of female genital Chlamydia trachomatis infection. Journal of Clinical Microbiology 36, 10811082.CrossRefGoogle ScholarPubMed
Colinet, H., Salin, C., Boivin, G. & Hance, T. (2005) Host age and fitness-related traits in a koinobiont aphid parasitoid. Ecological Entomology 30, 473479.CrossRefGoogle Scholar
Cônsoli, F.L. & Parra, J.R.P. (2000) Effect of the Age of the Pupal Holotissue on the nutritional quality of artificial diets for Trichogramma spp. (Hymenoptera: Trichogrammatidae). Anais da Sociedade Entomológica do Brasil 29(3), 555564.CrossRefGoogle Scholar
Crawley, M.J. (1993) GLIM for Ecologists. Oxford, Blackwell.Google Scholar
Dadd, R.H. (1985) Nutrition: organisms. Comprehensive Insect Physiology, Biochemistry and Pharmacology 4, 313390.Google Scholar
Da Rocha, L., Kolberg, R., Mendonça, M.D.S. & Redaelli, L.R. (2006) Effects of Egg Age of Spartocera dentiventris (Berg) (Hemiptera: Coreidae) on Parasitism by Gryon gallardoi (Brethes) (Hymenoptera: Scelionidae). Neotropical Entomology 35(5), 654659.CrossRefGoogle ScholarPubMed
Duthie, B., Abbott, K.G. & Nason, J.D. (2015) Trade-offs and coexistence in fluctuating environments: evidence for a key dispersal-fecundity trade-off in five nonpollinating fig wasps. The American Naturalist 16(1), 151158.CrossRefGoogle Scholar
Ebrahimi, E., Pintureau, B. & Shojai, M. (1998) Morphological and enzymatic study of the genus Trichogramma in Iran. Applied Entomology and Phytopathology 66(21), 3943.Google Scholar
Ellers, J., Van Alphen, J.J.M. & Sevenster, J.G. (1998) A field study of size fitness relationships in the parasitoid Asobara tabida . Journal of Animal Ecology 67, 318324.CrossRefGoogle Scholar
Fischbein, D., Bernstein, C. & Corley, J.C. (2013) Linking reproductive and feeding strategies in the parasitoid Ibalia leucospoides: does feeding always imply profit? Evolutionary Ecology 27, 619634.CrossRefGoogle Scholar
Fortes, P., Salvador, G. & Cônsoli, F.L. (2011) Ovary development and maturation in Nezara viridula (L.) (Hemiptera: Pentatomidae). Neotropical Entomology 40(1), 8996.CrossRefGoogle ScholarPubMed
Fossati, P. & Prencipe, L. (1982) Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry 28, 20772080.CrossRefGoogle ScholarPubMed
Gilchrist, G.W. & Huey, R.B. (2004) Plastic and genetic variation in wingloading as a function of temperature within and among parallelclines in Drosophila subobscura. Integrated Comparative Biology 44, 461470.CrossRefGoogle Scholar
Godfray, H.C.J. (1994) Parasitoids: Behavioral and Evolutionary Ecology. Princeton, New Jersey, Princeton University Press, 473 pp.CrossRefGoogle Scholar
Godin, C. & Boivin, G. (2000) Effects of host age on parasitism and progeny allocation in Trichogrammatidae. Entomologia Experimentalis et Applicata 97, 149160.CrossRefGoogle Scholar
Grandison, R.C., Piper, M.D.W. & Partridge, L. (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 10611064.CrossRefGoogle ScholarPubMed
Guo, J., Dong, S., Ye, G., Li, K., Zhu, J., Fang, Q. & Hu, C. (2011) Oosorption in the Endoparasitoid, Pteromalus puparum . Journal of Insect Science 11, 90.CrossRefGoogle ScholarPubMed
Harvey, J.A. (2005) Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity. Entomolgia Experimentalis et Applicata 117, 113.CrossRefGoogle Scholar
Harvey, J.A. & Strand, M.R. (2002) The developmental strategies of endoparasitoid wasps vary with host feeding. Ecology 83(9), 24392451.CrossRefGoogle Scholar
Ismail, M., Vernon, P., Hance, T., Pierre, J.S. & van Baaren, J. (2012) What are the possible benefits of small size for energy-constrained ectotherms in cold stress conditions? Oikos 121, 20722080.CrossRefGoogle Scholar
Jervis, M.A., Ellers, J. & Harvey, J.A. (2008) Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annual Review of Entomology 53, 361385.CrossRefGoogle ScholarPubMed
Kalcounis, M.C. & Brigham, R.M. (1995) Intraspecific variation in wing loading affects habitat use by little brown bats (Myotis lucifugus). Canadian Zoology Journal 73, 8995.CrossRefGoogle Scholar
Kant, R., Minor, M.A., Trewick, S.A. & Sandanayaka, W.R.M. (2012) Body size and fitness relation in male and female Diaeretiella rapae . BioControl 57, 759766.CrossRefGoogle Scholar
King, B.H. (1993) Sex ratio manipulation by parasitoid wasps. pp. 418441 in Wrensch, D.L. & Ebbert, M. (Eds) Evolution and Diversity of Sex Ratio in Insects and Mites. New York, Chapman & Hall.CrossRefGoogle Scholar
Kishani Farahani, H. & Goldansaz, S.H. (2013) Is host age an important factor in the bionomics of Apanteles Myeloenta (Hymenoptera: Braconidae)? European Journal of Entomology 110(2), 277283.CrossRefGoogle Scholar
Kishani Farahani, H., Ashouri, A., Goldansaz, S.H., Farrokhi, S., Ainouche, A. & van Baaren, J. (2015) Does Wolbachia infection affect decision-making in a parasitic wasp? Entomologia Experimentalis et Applicata 155, 102116.CrossRefGoogle Scholar
Klowden, M.J. (2007) Physiological Systems in Insects. San Diego, CA, Academic Press, p. 697.Google Scholar
Kraft, T. & Van Nouhuys, S. (2013) The effect of multi-species host density on superparasitism and sex ratio in a gregarious parasitoid. Ecological Entomology 38, 138146.CrossRefGoogle Scholar
Kölliker-Ott, U.M., Blows, M.W. & Hoffmann, A.A. (2003) Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? OIKOS 100, 563573.CrossRefGoogle Scholar
Kölliker-Ott, U.M., Bigler, F. & Hoffmann, A.A. (2004) Field dispersal and host location of Trichogramma brassicae is influenced by wing size but not wing shape. Biological Control 31, 110.CrossRefGoogle Scholar
Lampson, L.J., Morse, J.G. & Luck, R.F. (1996) Host selection, sex allocation, and host feeding by Metaphycus helvolus (Hymenoptera: Encyrtidae) on Saissetia oleae (Homoptera: Coccidae) and its effect on parasitoid size, sex, and quality. Environmental Entomology 25, 283294.CrossRefGoogle Scholar
Lauzière, I., Brodeur, J. & Pérez-Lachaud, G. (2001) Host stage selection and suitability in Cephalonomia stephanoderis Betrem (Hymenoptera: Bethylidae), a parasitoid of the coffee berry borer. Biological Control 21, 128133.CrossRefGoogle Scholar
Le Lann, C., Lodi, M. & Ellers, J. (2014) Thermal change alters the outcome of behavioral interactions between antagonistic partners. Ecological Entomology 39, 578588.CrossRefGoogle Scholar
Li, L. & Sun, J. (2011) Host suitability of a gregarious parasitoid on beetle hosts: flexibility between fitness of adult and offspring. PLoS ONE 6(4), e18563.CrossRefGoogle ScholarPubMed
Liu, S.S. (1985) Aspects of the numerical and functional responses of the aphid parasite, Aphidius sonchi, in the laboratory. Entomologia Experimentalis et Applicata 37, 247256.Google Scholar
Liu, Y.H., Li, B. & Xu, Z. (2013) Effect of host instar and temperature on fitness-related traits in the solitary endoparasitoid, Meteorus pulchricornis . Phytoparasitica 41, 17.CrossRefGoogle Scholar
López, O.P., Hénaut, Y., Cancino, J., Lambin, M., Cruz-López, L. & Rojas, J.C. (2009) Is host size an indicator of quality in the mass-reared parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae)? Florida Entomologist 92(3), 441449.CrossRefGoogle Scholar
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Mansfield, S. & Mills, N.J. (2002) Host egg characteristics, physiological host range, and parasitism following inundative releases of Trichogramma platneri (Hymenoptera: Trichogrammatidae) in walnut orchards. Environmental Entomology 31, 723731.CrossRefGoogle Scholar
Martel, V., Darrouzet, T. & Boivin, G. (2011) Phenotypic plasticity in the reproductive traits of a parasitoid. Journal of Insect Physiology 57, 682687.CrossRefGoogle ScholarPubMed
Mills, N.J. & Kuhlmann, U. (2000) The relationship between egg load and fecundity among Trichogramma parasitoids. Ecological Entomology 25, 315324.CrossRefGoogle Scholar
Moreno, F., Perez-Moreno, I. & Marco, V. (2009) Effect of Lobesia botrana (Lepidoptera: Tortricidae) egg age, density, and UV treatment on parasitism end development of T . cacoeciae (Hymenoptera: Trichogrammatidae). Environmental Entomology 38, 15131520.CrossRefGoogle Scholar
Nation, J.L. (2008) Insect Physiology and Biochemistry. CRC Press, 2nd edn. p 540.CrossRefGoogle Scholar
Ode, P.J. & Heinze, K.M. (2002) Host-size-dependent sex ratio theory and improving mass-reared parasitoid sex ratios. Biological Control 24, 3141.CrossRefGoogle Scholar
Pak, G.A. (1986) Behavioural variations among strains of Trichogramma spp. A review of the literature on host-age selection. Journal of Applied Entomology 101, 5564.CrossRefGoogle Scholar
Parra, J.R.P., Consoli, F. & Zucchi, R.A. (2010) Egg parasitoids in agroecosystems with emphasis on Trichogramma. Dordrecht, The Netherlands, Springer.CrossRefGoogle Scholar
Pinto, J.D. (1998) Systematics of the North American species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae). Memoirs of the Entomological Society of Washington 22, 1287.Google Scholar
Pizzol, J. (2004) Etudes bioécologiques de Trichogramma cacoeciae Marchal, parasitoïde oophage de l'eudémis de la vigne, en vue de son utilisation en lutte biologique. Diploˆme d'Ingénieur Diploˆmé par l'Etat, Montpellier, option Agriculture ENSAM.Google Scholar
Pizzol, J., Desneux, N., Wajnberg, E. & Thiéry, D. (2012) Parasitoid and host egg ages have independent impact on various biological traits in a Trichogramma species. Journal of Pest Science 85(4), 489496.CrossRefGoogle Scholar
Poorjavad, N., Goldansaz, S.H., Machtelinckx, T., Tirry, L., Stouthamer, R. & van Leeuwen, T. (2012) Iranian Trichogramma: ITS2 DNA characterization and natural Wolbachia infection. Biocontrol 15(2), 452459.Google Scholar
Quicke, D.L.J. (1997). Parasitic Wasps. UK, Chapman & Hall, ISBN 0-412-58350-X.Google Scholar
Ruohomaki, K. (1992) Wing size variation in Epirrita autumnata (Lep., Geometridae) in relation to larval density. Oikos 63, 260266.CrossRefGoogle Scholar
Saeki, Y. & Crowley, P.H. (2013) The size-number trade-off in clonal broods of a parasitic wasp: responses to the amount and timing of resource availability. Functional Ecology 27, 155164.CrossRefGoogle Scholar
Sagarra, L.A., Vincent, C. & Stewart, R.K. (2001) Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bulletin of Entomological Research 91, 363368.CrossRefGoogle ScholarPubMed
Schmidt, J.M. (1994) Host recognition and acceptance by Trichogramma. pp. 165200 in Wajnberg, E. & Hassan, S.A. (Eds) Biological Control with Egg Parasitoids. Wallingford, CAB International.Google Scholar
Starmer, W.T. & Wolf, L.L. (1989) Causes of variation in wing loading among Drosophila species. Biological Journal of the Linnean Society 37, 247261.CrossRefGoogle Scholar
Ueno, T. (2015) Effects of host size and laboratory rearing on offspring development and sex ratio in the solitary parasitoid Agrothereutes lanceolatus (Hymenoptera: Ichneumonidae). European Journal of Entomology 112(2), 281287.CrossRefGoogle Scholar
Van Baaren, J., Landry, B.L. & Boivin, G. (1999) Sex allocation and larval competition in a superparasitizing solitary egg parasitoid: competing strategies for an optimal sex ratio. Functional Ecology 13, 6667.CrossRefGoogle Scholar
Van Lenteren, J.C. (2000) Measures of success in biological control of arthropods by augmentation of natural enemies. pp. 77103 in Wratten, S. & Gurr, G. (Eds). Measures of Success in Biological Control. Dordrecht, The Netherlands, Kluwer Academic Publishers.CrossRefGoogle Scholar
Van Lenteren, J.C. & Bueno, V.H.P. (2003) Augmentative biological control of arthropods in Latin America. BioControl 48, 123139.CrossRefGoogle Scholar
Visser, B. & Ellers, J. (2012) Effects of a lipid-rich diet on adult parasitoid income resources and survival. Biological Control 60(2), 119122.CrossRefGoogle Scholar
Vuarin, P., Allemand, R., Moiroux, J., Van Baaren, J. & Gibert, P. (2012) Geographic variations of life history traits and potential trade-offs in different populations of the parasitoid Leptopilina heterotoma . Naturwissenschaften 99(11), 903912.CrossRefGoogle ScholarPubMed
Ziegler, R. & Van Antwerpen, R. (2006) Lipid uptake by insect oocytes. Insect Biochemistry and Insect Molecular Biology 36, 264272.CrossRefGoogle ScholarPubMed