Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T19:30:35.788Z Has data issue: false hasContentIssue false

Effect of environment and fallow period on Cosmopolites sordidus population dynamics at the landscape scale

Published online by Cambridge University Press:  12 March 2012

P.-F. Duyck
Affiliation:
CIRAD, UPR Systèmes Bananes et Ananas, Pôle de Recherche Agro-environnementale de la Martinique, BP 214, 97285 Le Lamentin Cedex 2, Martinique, French West Indies
E. Dortel
Affiliation:
CIRAD, UPR Systèmes Bananes et Ananas, Pôle de Recherche Agro-environnementale de la Martinique, BP 214, 97285 Le Lamentin Cedex 2, Martinique, French West Indies
F. Vinatier
Affiliation:
CIRAD, UPR Systèmes Bananes et Ananas, Pôle de Recherche Agro-environnementale de la Martinique, BP 214, 97285 Le Lamentin Cedex 2, Martinique, French West Indies
E. Gaujoux
Affiliation:
APEX, Batiment 4, Zone de belle Étoile, 97230 Sainte Marie, Martinique, French West Indies
D. Carval
Affiliation:
CIRAD, UPR Systèmes Bananes et Ananas, Pôle de Recherche Agro-environnementale de la Martinique, BP 214, 97285 Le Lamentin Cedex 2, Martinique, French West Indies
P. Tixier*
Affiliation:
CIRAD, UPR Systèmes Bananes et Ananas, Pôle de Recherche Agro-environnementale de la Martinique, BP 214, 97285 Le Lamentin Cedex 2, Martinique, French West Indies
*
*Author for correspondence Fax: +596 596 423 001 E-mail: [email protected]

Abstract

Understanding how the population dynamics of insect pests are affected by environmental factors and agricultural practices is important for pest management. To investigate how the abundance of the banana weevil, Cosmopolites sordidus (Coleoptera: Curculionidae), is related to environmental factors and the length of the fallow period in Martinique, we developed an extensive data set (18,130 observations of weevil abundance obtained with pheromone traps plus associated environmental data) and analysed it with generalized mixed-effects models.

At the island scale, C. sordidus abundance was positively related to mean temperature and negatively related to mean rainfall but was not related to soil type. The number of insects trapped was highest during the driest months of the year. Abundance of C. sordidus decreased as the duration of the preceding fallow period increased.

The latter finding is inconsistent with the view that fallow-generated decomposing banana tissue is an important resource for larvae that leads to an increase in the pest population. The results are consistent with the view that fallows, in association with pheromone traps, are effective for the control of the banana weevil.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abera-Kalibata, A.M., Gold, C.S., Van Driesche, R.G. & Ragama, P.E. (2007) Composition, distribution, and relative abundance of ants in banana farming systems in Uganda. Biological Control 40, 168178.CrossRefGoogle Scholar
Ayuke, F.O., Brussaard, L., Vanlauwe, B., Six, J., Lelei, D.K., Kibunja, C.N. & Pulleman, M.M. (2011) Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Applied Soil Ecology 48, 5362.Google Scholar
Barberi, P., Burgio, G., Dinelli, G., Moonen, A.C., Otto, S., Vazzana, C. & Zanin, G. (2010) Functional biodiversity in the agricultural landscape: relationships between weeds and arthropod fauna. Weed Research 50, 388401.CrossRefGoogle Scholar
Bates, D., Maechler, M. & Bolker, B.M. (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-39. http://cran.r-project.org/web/packages/lme4/index.html.Google Scholar
Beauhaire, J., Ducrot, P.H., Malosse, C., Ndiege, D.R.O. & Otieno, D.O. (1995) Identification and synthesis of sordidin, a male pheromone emitted by Cosmopolites sordidus. Tetrahedron Letters 36, 10431046.CrossRefGoogle Scholar
Birch, L.C. (1948) The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17, 1526.CrossRefGoogle Scholar
Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. & White, J.S.S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24, 127135.CrossRefGoogle ScholarPubMed
Colmet-Daage, F. & Lagache, P. (1965) Caractéristiques de quelques groupes de sols dérivés de roches volcaniques aux Antilles françaises. Cahiers de l'ORSTOM serie pédologie 8, 91121.Google Scholar
Cuillé, J. (1950) Recherches sur le Charançon du Bananier Cosmopolites sordidus, Germar: Monographie de l'insecte et Recherche de ses Chimiotropismes. Paris, France, IFAC Série Technique 4.Google Scholar
Duyck, P.F., David, P. & Quilici, S. (2006) Climatic niche partitioning following successive invasions by fruit flies in La Réunion. Journal of Animal Ecology 75, 518526.Google Scholar
Duyck, P.-F., Pavoine, S., Tixier, P., Chabrier, C. & Quénéhervé, P. (2009) Host range as an axis of niche partitioning in the plant-feeding nematode community of banana agroecosystems. Soil Biology and Biochemistry 41, 11391145.Google Scholar
Duyck, P.F., Lavigne, A., Vinatier, F., Achard, R., Okolle, J.N. & Tixier, P. (2011) Addition of a new resource in agroecosystems: Do cover crops alter the trophic positions of generalist predators? Basic and Applied Ecology 12, 4755.Google Scholar
Gold, C.S., Pena, J.E. & Karamura, E.B. (2001) Biology and integrated pest management for the banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). Integrated Pest Management Reviews 6, 79155.Google Scholar
Gold, C.S., Okech, S.H. & Nokoe, S. (2002) Evaluation of pseudostem trapping as a control measure against banana weevil, Cosmopolites sordidus (Coleoptera: Curculionidae) in Uganda. Bulletin of Entomological Research 92, 3544.Google Scholar
Huffaker, C.B. & Gutierrez, A.P. (1999) Ecological Entomology. New York, USA, John Wiley and Sons.Google Scholar
Juliano, S.A., O'Meara, G.F., Morrill, J.R. & Cutwa, M.M. (2002) Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130, 458469.CrossRefGoogle ScholarPubMed
Koppenhofer, A.M. (1993) Observations on egg-laying behavior of the banana weevil, Cosmopolites sordidus (Germar). Entomologia Experimentalis et Applicata 68, 187192.CrossRefGoogle Scholar
Lescot, T. (1988) Influence de l'altitude sur les populations du charançon des bananiers (Cosmopolites sordidus Germar). Fruits 43, 433437.Google Scholar
Mesquita, A.L.M. & Alves, E.J. (1983) Aspectos da biologia da broca-do-rizoma em diferentes cultivares de bananeira (Cosmopolites sordidus, Musa acuminata). Pesquisa Agropecuária Brasileira 12891292.Google Scholar
Okolle, J.N., Fansi, G.H., Lombi, F.M., Sama Lang, P. & Loubana, P.M. (2009) Banana entomological research in Cameroon: How far and what next? The African Journal of Plant Science and Biotechnology 3, 119.Google Scholar
Price, N.S. (1994) Alternate cropping in the management of Radopholus similis and Cosmopolites sordidus two important pests of banana and plantain. International Journal of Pest Management 40, 237244.CrossRefGoogle Scholar
R Development Core Team (2010) R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Rhino, B., Dorel, M., Tixier, P. & Risede, J.M. (2010) Effect of fallows on population dynamics of Cosmopolites sordidus: toward integrated management of banana fields with pheromone mass trapping. Agricultural and Forest Entomology 12, 195202.Google Scholar
Roth, L. & Willis, E. (1963) The humidity behavior of Cosmopolites sordidus Germar (Coleoptera: Curculionidae). Annals of the Entomological Society of America 56, 4142.Google Scholar
Rusch, A., Valantin-Morison, M., Sarthou, J.P. & Roger-Estrade, J. (2012) Effect of crop management and landscape context on insect pest populations and crop damage. Agriculture, Ecosystems & Environment 14, 3747.Google Scholar
Tinzaara, W., Gold, C.S., Dicke, M., van Huis, A. & Ragama, P.E. (2005) Factors influencing pheromone trap effectiveness in attracting the banana weevil, Cosmopolites sordidus. International Journal of Pest Management 51, 281288.CrossRefGoogle Scholar
Traore, L., Gold, C.S., Pilon, J.G. & Boivin, G. (1993) Effects of temperature on embryonic development of banana weevil, Cosmopolites sordidus Germar. African Crop Science Journal 1, 111116.Google Scholar
Traore, L., Gold, C.S., Boivin, G. & Pilon, J.G. (1996) Developpement postembryonnaire du charançon du bananier. Fruits 51, 105113.Google Scholar
Tscharntke, T., Steffan-Dewenter, I., Kruess, A. & Thies, C. (2002) Characteristics of insect populations on habitat fragments: A mini review. Ecological Research 17, 229239.CrossRefGoogle Scholar
Vinatier, F., Tixier, P., Le Page, C., Duyck, P.-F. & Lescourret, F. (2009) COSMOS, a spatially explicit model to simulate the epidemiology of Cosmopolites sordidus in banana fields. Ecological Modelling 220, 22442254.Google Scholar
Vinatier, F., Chailleux, A., Duyck, P.F., Salmon, F., Lescourret, F. & Tixier, P. (2010) Radio telemetry unravels movements of a walking insect species in heterogeneous environments. Animal Behaviour 80, 221229.Google Scholar
Vinatier, F., Lescourret, F., Duyck, P.-F., Martin, O., Senoussi, R. & Tixier, P. (2011) Should I stay or should I go? A habitat-dependent dispersal kernel improves prediction of movement. PLoS ONE 6, e21115.Google Scholar