Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T18:44:07.377Z Has data issue: false hasContentIssue false

DNA barcoding of five common stored-product pest species of genus Cryptolestes (Coleoptera: Laemophloeidae)

Published online by Cambridge University Press:  11 April 2014

Y.J. Wang
Affiliation:
Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
Z.H. Li*
Affiliation:
Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
S.F. Zhang
Affiliation:
Institute of Animal and Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
Z. Varadínová
Affiliation:
Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, Prague, Czech Republic Department of Pest Control of Stored Products and Food Safety, Crop Research Institute, Drnovská 507, Prague, Czech Republic
F. Jiang
Affiliation:
Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
Z. Kučerová
Affiliation:
Department of Pest Control of Stored Products and Food Safety, Crop Research Institute, Drnovská 507, Prague, Czech Republic
V. Stejskal
Affiliation:
Department of Pest Control of Stored Products and Food Safety, Crop Research Institute, Drnovská 507, Prague, Czech Republic
G. Opit
Affiliation:
Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
Y. Cao
Affiliation:
Academy of State Administration of Grain, No. 11 Baiwanzhuang Street, Beijing, China
F.J. Li
Affiliation:
Academy of State Administration of Grain, No. 11 Baiwanzhuang Street, Beijing, China
*
*Author for correspondence Phone: +86 -10- 62731299 Fax: +86 -10- 62733404 E-mail: [email protected]

Abstract

Several species of the genus Cryptolestes Ganglbauer, 1899 (Coleoptera: Laemophloeidae) are commonly found in stored products. In this study, five species of Cryptolestes, with almost worldwide distribution, were obtained from laboratories in China, Czech Republic and the USA: Cryptolestes ferrugineus (Stephens, 1831), Cryptolestes pusillus (Schönherr, 1817), Cryptolestes turcicus (Grouvelle, 1876), Cryptolestes pusilloides (Steel & Howe, 1952) and Cryptolestes capensis (Waltl, 1834). Molecular identification based on a 658 bp fragment from the mitochondrial DNA cytochrome c oxidase subunit I (COI) was adopted to overcome some problems of morphological identification of Cryptolestes species. The utility of COI sequences as DNA barcodes in discriminating the five Cryptolestes species was evaluated on adults and larvae by analysing Kimura 2-parameter distances, phylogenetic tree and haplotype networks. The results showed that molecular approaches based on DNA barcodes were able to accurately identify these species. This is the first study using DNA barcoding to identify Cryptolestes species and the gathered DNA sequences will complement the biological barcode database.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonini, G., Coletti, G., Serrani, L., Tronci, C., Cristofaro, M. & Smith, L. (2009) Using molecular genetics to identify immature specimens of the weevil Ceratapion basicorne (Coleoptera: Apionidae). Biological Control 51, 152157.Google Scholar
Arbogast, R.T. (1991) Identification of Cryptolestes ferrugineus and Cryptolestes pusillus (Coleoptera: Cucujidae): a practical character for sorting large samples by species. Entomological News 102, 3336.Google Scholar
Armstrong, K.F. & Ball, S.L. (2005) DNA barcoding for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society B 360, 18131823.Google Scholar
Arnaud, L., Brostaux, Y., Assié, L.K., Gaspar, C. & Haubruge, E. (2002) Increased fecundity of malathion-specific resistant beetles in absence of insecticide pressure. Heredity 89, 425429.CrossRefGoogle ScholarPubMed
Banks, H.J. (1979) Identification of stored product Cryptolestes spp. (Coleoptera: Cucujidae): a rapid technique for preparation of suitable mounts. Australian Journal of Entomology 18, 217222.Google Scholar
Barr, N.B., Islam, M.S., De Meyer, M. & McPheron, B.A. (2012) Molecular identification of Ceratitis capitata (Diptera: Tephritidae) using DNA sequences of the COI barcode region. Annals of the Entomological Society of America 105, 339350.CrossRefGoogle Scholar
Beltrà, A., Soto, A. & Malausa, T. (2012) Molecular and morphological characterisation of Pseudococcidae surveyed on crops and ornamental plants in Spain. Bulletin of Entomological Research 102, 165172.Google Scholar
Caterino, M.S. & Tishechkin, A.K. (2006) DNA identification and morphological description of the first confirmed larvae of Hetaeriinae (Coleoptera: Histeridae). Systematic Entomology 31, 405418.Google Scholar
Clement, M., Posada, D. & Crandall, K.A. (2000) TCA: a computer program to estimate gene genealogies. Molecular Ecology 9, 16571659.Google Scholar
Darling, J.A. & Blum, M.J. (2007) DNA-based methods for monitoring invasive species: a review and prospectus. Biological Invasions 9, 751765.Google Scholar
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Foottit, R.G., Maw, H.E.L., Dohlen, C.D.V. & Hebert, P.D.N. (2008) Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Molecular Ecology Resources 8, 11891201.Google Scholar
Freeman, J.A. (1952) Laemophloeus spp. as a major pest of stored grain. Plant Pathology 1, 6976.Google Scholar
Freeman, J.A. (1967) Problems of infestation of commodities carried by sea with special references to imports into Great Britain. EPPO Publication, Series A, No 46E, Lisbon, Stored Product Conference.Google Scholar
Frézal, L. & Leblois, R. (2008) Four years of DNA barcoding: current advances and prospects. Infection Genetics and Evolution 8, 727736.Google Scholar
Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307321.Google Scholar
Hagstrum, D. & Subramanyam, B. (2009) Stored-product Insect Resource. St. Paul, MN, AACC Press, p. 509.Google Scholar
Hajibabaei, M., Singer, G.A.C., Hebert, P.D.N. & Hickey, D.A. (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics 23, 167172.Google Scholar
Halstead, D.G.H. (1993) Keys for the identification of beetles associated with stored products-II. Laemophloeidae, Passandridae and Silvanidae. Journal of Stored Products Research 29, 99197.Google Scholar
Hart, M.W. & Sunday, J. (2007) Things fall apart: biological species from unconnected parsimony networks. Biology Letters 3, 509512.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L. & DeWaard, J.R. (2003 a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B 270, 313321.Google Scholar
Hebert, P.D.N., Ratnasingham, S. & deWaard, J.R. (2003 b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B 270 (Suppl 1), S96S99.Google Scholar
Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S. & Francis, C.M. (2004) Identification of birds through DNA barcodes. PLoS Biology 2, 16571663.Google Scholar
Hebert, P.D.N., DeWaard, J.R. & Landry, J.F. (2010) DNA barcodes for 1/1000 of the animal kingdom. Biology Letters 6, 359362.Google Scholar
Hossain, M., Verner, P.H. & Rezaur, R. (1986) Taxonomic descriptions of the mature larvae of six species of Cryptolestes (Coleoptera: Cucujidae). Bangladesh Journal of Zoology 14, 139148.Google Scholar
Howe, R.W., & Lefkovitch, L.P. (1957) The distribution of the storage species of Cryptolestes (Col.: Cucujidae). Bulletin of Entomological Research 48, 795809.Google Scholar
Kučerová, Z. & Stejskal, V. (2002) Comparative egg morphology of Silvanid and Laemophloeid beetles (Coleoptera) occurring in stored products. Journal of Stored Products Research 38, 219227.Google Scholar
Lefébure, T., Douady, C.J., Gouy, M. & Gibert, J. (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40, 435447.Google Scholar
Lefkovitch, L.P. (1958) Unusual antenna1 characters in some Laemophloeinae (Coleoptera: Cucujidae) and their taxonomic importance. Proceedings of the Royal Entomological Society of London (B) 27, 93100.Google Scholar
Lefkovitch, L.P. (1962) A revision of African Laemophloeinae (Coleoptera: Cucujidae). Bulletin of the British Museum of Natural History (Entomology) 12, 167245.Google Scholar
Lefkovitch, L.P. & Currie, J.E. (1967) Some morphological, biological and genetical differences between Cryptolestes pusillus fuscus ssp.n. and C. pusillus pusillus (Schönherr) (Coleoptera, Cucujidae). Journal of Stored Products Research 3, 311320.Google Scholar
Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.Google Scholar
Löbl, I. & Smetana, A. (Eds) (2007) Catalogue of Palaearctic Coleoptera. Volume 4: Elateroidea – Derodontoidea – Bostrichoidea – Lymexiloidea – Cleroidea – Cucujoidea. Stenstrup, Apollo Books, p. 935. CrossRefGoogle Scholar
Meiklejohn, K.A., Wallman, J.F. & Dowton, M. (2011) DNA-based identification of forensically important Australian Sarcophagidae (Diptera). International Journal of Legal Medicine 125, 2732.Google Scholar
Meyer, C.P. & Paulay, G. (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, 22292238.Google Scholar
Pamilo, P., Viljakainen, L. & Vihavainen, A. (2007) Exceptionally high density of NUMTs in the honeybee genome. Molecular Biology and Evolution 24, 13401346.CrossRefGoogle ScholarPubMed
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, automated barcode gap discovery for primary species delimitation. Molecular Ecology 21, 18641877.Google Scholar
Raupach, M.J., Astrin, J.J., Hannig, K., Peters, M.K., Stoeckle, M.Y. & Wägele, J. (2010) Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Frontiers in Zoology 7, 115.Google Scholar
Rees, D. (2004) Insects of Stored Products. Collingwood, Victoria, Australia, CSIRO Publishing, p. 192.Google Scholar
Shoemaker, D.D., Dyer, K.A., Ahrens, M., McAbee, K. & Jaenike, J. (2004) Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168, 20492058.CrossRefGoogle ScholarPubMed
Sinha, R.N. (1975) Climate and the infestation of stored cereals by insects. pp. 117141 in Proceedings of the first International Working Conference on Stored Products Entomology. 1974, Savannah, USA.Google Scholar
Song, H., Bhay, J.E., Whiting, M.F. & Crandall, K.A. (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceeding of the National Academy of Sciences of the USA 105, 1348613491.Google Scholar
Stejskal, V. & Hubert, J. (2008) Risk of occupational allergy to stored grain arthropods and false pest-risk perception in Czech grain stores. Annals of Agricultural and Environmental Medicine 15, 2935.Google Scholar
Stejskal, V., Hubert, J., Kučerová, Z., Munzbergová, Z., Lukáš, J. & Žďárková, E. (2003) The influence of type of storage on pest infestation of stored grain in the Czech Republic. Plant Soil Environment 49, 5562.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Templeton, A.R., Crandall, K.A. & Sing, C.F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619633.Google Scholar
Thomas, M.C. (1988) A revision of the new world species of Cryptolestes Ganglbauer (Coleoptera: Cucujidae: Laemophloeinae). Insecta Mundi 2, 4365.Google Scholar
Throne, J.E., Doehlert, D.C. & McMullen, M.S. (2003) Susceptibility of commercial oat cultivars to Cryptolestes pusillus and Oryzaephilus surinamensis . Journal of Stored Products Research 39, 213223.CrossRefGoogle Scholar
Trematerra, P., Stejskal, V. & Hubert, J. (2011) The monitoring of semolina contamination by insect fragments using the light filth method in an Italian mill. Food Control 22, 10211026.CrossRefGoogle Scholar
Wiemers, M. & Fiedler, K. (2007) Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4, 116.Google Scholar
Wong, E.H.K., Shivji, M.S., & Hanner, R.H. (2009) Identifying sharks with DNA barcodes: assessing the utility of a nucleotide diagnostic approach. Molecular Ecology Resources 9, 243256.CrossRefGoogle ScholarPubMed
Xiao, J.H., Wang, N.X., Li, Y.W., Murphy, R.W., Wan, D.G., Niu, L.M., Hu, H.Y., Fu, Y.G. & Huang, D.W. (2010) Molecular approaches to identify cryptic species and polymorphic species within a complex community of fig wasps. PLoS ONE 5, e15067. doi: 10.1371/journal.pone.0015067.Google Scholar
Yang, Q.Q., Kučerová, Z., Li, Z.H., Kalinović, I., Stejskal, V., Opit, G. & Cao, Y. (2012) Diagnosis of Liposcelis entomophila (Insecta: Psocodea: Liposcelididae) based on morphological characteristics and DNA barcodes. Journal of Stored Products Research 48, 120125.Google Scholar
Yang, Q.Q., Zhao, S., Kučerová, Z., Stejskal, V., Opit, G., Qin, M., Cao, Y., Li, F.J. & Li, Z.H. (2013) Validation of the 16S rDNA and COI DNA Barcoding technique for rapid molecular identification of stored product Psocids (Insecta: Psocodea: Liposcelididae). Journal of Economic Entomology 106, 419425.Google Scholar