Published online by Cambridge University Press: 24 July 2007
Diamondback moth (DBM), Plutella xylostella, is known for causing damage to Brassica crops and developing resistance to chemical and biological pesticides; it has become one of the most difficult pests to manage in many regions around the world. The only way to reduce reliance on pesticides is to maximize the role of natural control agents for integrated pest management programs and be able to incorporate the mortality from control agents into pest control decision-making. More than 90 hymenopterous parasitoids are associated with DBM worldwide; among them, Diadegma semiclausum, is a major endoparasitoid of P. xylostella. To optimize parasitism of pests in pest control decision-making, it is necessary to develop rapid and simple methods for distinguishing parasitized from non-parasitized larvae in the field. Here we report on a number of diagnostic tools to identify parasitized larvae. One is based on differential melanization reactions in hemolymph due to immune suppression in parasitized larvae. The lack of coagulation reactions in hemolymph provides a simple initial test, where squashing a non-parasitized larva onto nitrocellulose membrane traps chlorophyll-containing gut content on the membrane leaving a green dot of clotted gut material. However, in immune-suppressed parasitized larvae, the gut content was washed away in absence of coagulation reactions and the membrane lacks a green dot. This tool alone or combined with others, allows quick detection of parasitized caterpillars in the field. We further showed that the antibody MAb 9A5 can be used to detect D. semiclausum parasitized larvae of DBM in Western blots.