Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:52:51.492Z Has data issue: false hasContentIssue false

Detection of esterase activity in susceptible and organophosphate resistant strains of the cattle tick Boophilus microplus (Acari: Ixodidae)

Published online by Cambridge University Press:  10 July 2009

R. Rosario-Cruz
Affiliation:
Department of Veterinary Pathobiology, Texas A & M University, College Station, Texas 77843–4467, USA
E. Miranda-Miranda
Affiliation:
Cenid-Parasitologia Veterinaria INIFAP-SARH, Apartado Postal 206 Civac, Morelos, CP 62500, Mexico
Z. Garcia-Vasquez
Affiliation:
Cenid-Parasitologia Veterinaria INIFAP-SARH, Apartado Postal 206 Civac, Morelos, CP 62500, Mexico
M. Ortiz-Estrada
Affiliation:
Direccion General de Salud Animal-SARH, Centro Nacional de Parasitologia Animal, Carretera Federal Cuernavaca-Cuautla km 12.5, Jiutepec, Morelos, Mexico

Abstract

Two organophosphate (OP) resistant strains of the cattle tick Boophilus microplus (Canestrini) from Mexico and Costa Rica were used to analyse the presence of esterase activity associated with resistance. The concentrations of six major proteins in both resistant strains were increased compared to the susceptible Morelos strain, both when stained with Coomassie Brilliant Blue after SDS-PAGE, and when analysed for esterase activity by the hydrolysis of naphthyl acetate esters. Esterases were named A or B in relation to the substrate preference for alpha or beta naphthyl acetate and numbered according to their position on the SDS—PAGE. The molecular weights of these proteins were: 125, 115, 108, 77, 43 and 67 Kd for Est-Bl, Est-B2, Est-B3, Est-B4, Est-B5 and Est-A respectively. Est-B3 showed cholinesterase (ChE) activity. This study strengthens the hypothesis that the mechanism associated with OP resistance found in many other insects includes an increase of esterase activity, probably as a result of gene amplification. The genes encoding these enzymes could be potentially used as molecular markers to detect resistance in the cattle tick B. microplus using a DNA probe.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, E.J., Sobrino, A.L., Santamaria, E., Roman, M., Hernandez, M., Ortiz, A. & Ortiz, N. (1986) Resistencia de las garrapatas en Mexico. Seminaria International de Parasitologia Animal. Cuernavaca, Morelos, Mexico.Google Scholar
Bull, D.L. & Ahrens, E.H. (1988) Metabolism of coumaphos in susceptible and resistant strains of Boophilus microplus (Acari: Ixodidae). Journal of Medical Entomology 25, 9498.CrossRefGoogle ScholarPubMed
Dary, O., Georghiu, G.P., Parson, E. & Pasteur, N. (1991) Dot-blot test for identification of insecticide resistant acetylcholinesterase in single insects. Journal of Economic Entomology 84, 2833.CrossRefGoogle ScholarPubMed
Field, L.M., Devonshire, A.L. & Forde, B.G. (1988) Molecular evidence that insecticide resistance in peach potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochemistry Journal 251, 309312.CrossRefGoogle ScholarPubMed
Field, L.M., Williamson, M.S., Moores, G.D. & Devonshire, A.L. (1993) Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochemistry Journal 294, 569574.CrossRefGoogle ScholarPubMed
Graham, O.H. & Hourrigan, J.L. (1977) Erradication programs for the arthropod parasites of livestock. Journal of Medical Entomology 13, 629658.CrossRefGoogle Scholar
Hemingway, J. (1983) Biochemical studies on malathion resistance in Anopheles arabiniensis from Sudan. Transactions of Royal Society of Tropical Medicine and Hygiene 77, 477480.CrossRefGoogle ScholarPubMed
Karunaratne, S.H., Jayawardena, K.G., Hemingway, J. & Ketterman, A.J. (1993) Characterization of a B type esterase involved in insecticide resistance from the mosquito Culex quinquefasciatus. Biochemistry Journal 294, 575579.CrossRefGoogle Scholar
Laemmli, V.K. (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 277, 680685.CrossRefGoogle Scholar
Lee, R.M. & Batham, P. (1966) The activity and organophosphate inhibition of cholinesterases from susceptible and resistant ticks (Acari). Entomologia Experimentalis et Applicata 9, 1324.CrossRefGoogle Scholar
Lowry, O.H., Rosenbrough, N.J., Farr, A.L. & Randall, R.J. (1951) Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Mouches, C., Pasteur, N., Berg, J.B., Hyrien, O., Raymond, M., de Saint Vincent, B.R., de Silvestry, M. & Georghiou, G.P. (1986) Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233, 778.CrossRefGoogle Scholar
Mouches, C., Magnin, M., Berge, J.B., De Silvestri, M., Beyssat, V., Pasteur, N. & Georghiou, P.G. (1987) Overproduction of detoxifying esterases in organophosphate resistant Culex mosquitoes, and their presence in other insects. Proceedings of the National Academy of Sciences, USA 84, 21132116.CrossRefGoogle ScholarPubMed
Mouches, C., Pauplin, Y., Agarwal, M., Lenieux, L., Herzog, M., Abadon, M., Beyssat-Arnaouty, V., Hyrien, O., de Saint Vincent, B.R., Georghiou, G.P. & Pasteur, N. (1990) Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex sp. Proceedings of the National Academy of Sciences, USA 87, 25742578.CrossRefGoogle Scholar
Myers, M., Richmond, R.C. & Oakeshott, J.G. (1988) On the origin of esterases. Molecular Biology and Evolution 5, 113119.Google ScholarPubMed
Nolan, J. (1985) Mechanisms of resistance to chemicals in arthropod parasites of veterinary importance. Veterinary Parasitology 18, 155156.CrossRefGoogle ScholarPubMed
Poirie, M., Raymond, M. & Pasteur, N. (1991) Identification of two distinct amplifications of the esterase B locus in Culex pipiens (L.) mosquitoes from Mediterranean countries. Biochemical Genetics 30, 1320.CrossRefGoogle Scholar
Raymond, M., Pasteur, N., Georghiou, G.P., Mellon, R.B., Wirth, M.C. & Hawley, M. (1987) Detoxification esterases new to California in organophosphate resistant Culex quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology 24, 2427.CrossRefGoogle ScholarPubMed
Raymond, M., Beyssat-Arnaouty, V., Sivasu-Bramanian, , Mouches, C., Georghiou, G.P. & Pasteur, N. (1989) Amplification of various esterase B's responsible for organophosphate resistance in Culex mosquitoes. Biochemical Genetics 27, 417422.CrossRefGoogle ScholarPubMed
Roulston, W.J., Schitzerling, H.J. & Schuntner, C.A. (1968) Acetylcholinesterase insensitivity in the Biarra strain of cattle tick Boophilus microplus, as a cause of resistance to organophosphorus and carbamate acaricides. Australian Journal of Biological Sciences 21, 759–707.CrossRefGoogle ScholarPubMed
Roslavtseva, S.A., Evemina, O., Bakanova, E.I. & Poliakova, I. (1993) The enzyme systems in natural population of the house fly Musca domestica highly resistant to organophosphate insecticide. Izvestiya Akademii Nauk Seriya Biologicheskaya 5, 722731.Google Scholar
Schnitzerling, H.J., Schunter, C.A., Roulston, W.J. & Wilson, J.T. (1974) Characterization of the organophosphorus-resistant Mt. Alford, Gracemere and Silkwood strains of the cattle tick, Boophilus microplus. Australian Journal of Biological Sciences 27, 397408.CrossRefGoogle ScholarPubMed
Silk, E., King, J. & Whittaker, M. (1979) Assay of cholinesterase in clinical chemistry. Annals of Clinical Biochemistry 16, 5775.CrossRefGoogle ScholarPubMed
Stone, B.F. & Haydock, K.P. (1962) A method for measuring the acaricide susceptibility of the cattle tick B. microplus (Can.). Bulletin of Entomological Research 53, 563578.CrossRefGoogle Scholar
Trapaga, B.J. (1989) The campaign against Boophilus spp. in Mexico, benefits, problems and prospects. FAO Animal Production and Health 75, 2448.Google Scholar
Wilson, B.M. & Henderson, J.D. (1992) Blood esterase determination as marker of exposures. Review of Environmental Contamination and Toxicology 128, 5569.Google Scholar
Wirth, C.M., Marquine, M., Georghiou, P.G. & Pasteur, N. (1990) Esterase A2 and B2 in Culex quinquefasciatus (Diptera:Culicidae). Role in organophosphate resistance and linkage. Journal of Medical Entomology 27, 202206.CrossRefGoogle ScholarPubMed
Wright, F.C. & Ahrens, E.H. (1988) Cholinesterase insensitivity: A mechanism of resistance in Mexican strains of Boophihis microplus (Acari: Ixodidae) against coumaphos. Journal of Medical Entomology 25, 234239.CrossRefGoogle ScholarPubMed