Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T01:10:15.678Z Has data issue: false hasContentIssue false

Cryptic diversity in host-associated populations of Tetra pinnatifidae (Acari: Eriophyoidea): What do morphometric, mitochondrial and nuclear data reveal and conceal?

Published online by Cambridge University Press:  10 January 2014

Hao-Sen Li
Affiliation:
Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
Xiao-Feng Xue
Affiliation:
Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
Xiao-Yue Hong*
Affiliation:
Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
*
*Author for correspondence+86-25-84395339 E-mail: [email protected]

Abstract

Traditional morphology-based taxonomy of eriophyoid mites (Acari: Eriophyoidea) has been challenged by molecular-based technologies in the detection of cryptic species. However, the implications of such cryptic diversity appear to differ when methods based on different types of data are used. Here, samples of a host-associated eriophyoid mite species, Tetra pinnatifidae, collected from different host plants and localities are evaluated. The congruence of results based on morphometric (32 characters), mitochondrial (16S), and nuclear (28S) data were evaluated and showed a host-associated cryptic diversity dividing this morphospecies into several groups/clades that were morphometrically indistinguishable. In comparison, the 16S data confirmed cryptic speciation and intra-clade host-associated diversity, while 28S did not. In contrast, 28S data revealed potential gene flow between host-associated populations. High mitochondrial divergence, as well as low nuclear and morphological divergence indicated very recent stage of cryptic diversity of this eriophyoid mite.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amrine, J.W. Jr & Manson, D.C.M. (1996) Preparation, mounting and descriptive study of eriophyoid mites. pp. 383396 in Lindquist, E.E., Sabelis, M.W. & Bruin, J. (Eds) Eriophyoid Mites: Their Biology, Natural Enemies and Control. Amsterdam, Elsevier, World Crop Pests 6.Google Scholar
Amrine, J.W. Jr, Stasny, T.A. & Flechtmann, C.H.W. (2003) Revised keys to world genera of Eriophyoidea (Acari: Prostigmata). West Bloomfield, MI, USA, Indira Publishing House, 244 pp.Google Scholar
Bandelt, H.J., Forster, P. & Rohl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.Google Scholar
Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K., Meier, R., Winker, K., Ingram, K.K. & Das, I. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148155.Google Scholar
Calcagno, V., Bonhomme, V., Thomas, Y., Singer, M.C., & Bourguet, D. (2010) Divergence in behaviour between the European corn borer, Ostrinia nubilalis, and its sibling species Ostrinia scapulalis: adaptation to human harvesting? Proceedings of the Royal Society of London. Series B. Biological Sciences 277, 27032709.Google Scholar
Campbell, B.C., Steffen-Campbell, J.D. & Werren, J.H. (1993) Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Molecular Biology 2, 225237.Google Scholar
Carew, M., Schiffer, M., Umina, P., Weeks, A. & Hoffmann, A.A. (2009) Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bulletin of Entomological Research 99, 479–286.Google Scholar
Cunningham, J.P., Zalucki, M.P. & West, S.A. (1999) Learning in Helicoverpa armigera (Lepidoptera: Noctuidae): a new look at the behaviour and control of a polyphagous pest. Bulletin of Entomological Research 89, 201207.Google Scholar
Dabert, J., Ehrnsberger, R. & Dabert, M. (2008) Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari). Zootaxa 1719, 4152.Google Scholar
Funk, D.J. & Omland, K.E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insight from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics 34, 397423.Google Scholar
Guindon, S., Delsuc, F., Dufayard, J.F. & Gascuel, O. (2009) Estimating maximum likelihood phylogenies with PhyML. pp. 113137 in Bioinformatics for DNA Sequence Analysis. Totowa, NJ, Humana Press.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B. Biological Sciences 270, 313321.CrossRefGoogle ScholarPubMed
Henry, C.S. & Wells, M.M. (2010) Acoustic niche partitioning in two cryptic sibling species of Chrysoperla green lacewings that must duet before mating. Animal Behaviour 80, 9911003.CrossRefGoogle Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.Google Scholar
Kumar, S., Nei, M., Dudley, J. & Tamura, K. (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9, 299306.Google Scholar
Leaché, A.D. & Mulcahy, D.G. (2007) Phylogeny, divergence times and species limits of spiny lizards (Sceloporus magister species group) in western North American deserts and Baja California. Molecular Ecology 16, 52165233.Google Scholar
Lindquist, E.E. (1996) External anatomy and notation of structures, pp. 331 in Lindquist, E.E., Sabelis, M.W., Bruin, J. (Eds) Eriophyoid Mites: Their Biology, Natural Enemies and Control. Amsterdam, Elsevier, World Crop Pests 6.Google Scholar
Magud, B.D., Stanisavljević, L.Ž. & Petanović, R.U. (2007) Morphological variation in different populations of Aceria anthocoptes (Acari: Eriophyoidea) associated with the Canada thistle, Cirsium arvense, in Serbia. Experimental and Applied Acarology 42, 173183.Google Scholar
Michalska, K., Skoracka, A., Navia, D. & Amrine, J.W. Jr (2010) Behavioural studies on eriophyoid mites: an overview. Experimental and Applied Acarology 51, 3159.Google Scholar
Miller, A.D., Skoracka, A., Navia, D., Mendonca, R.S.D., Szydło, W., Schultz, M.B., Smith, C.M., Truol, G. & Hoffmann, A.A. (2013) Phylogenetic analyses reveal extensive cryptic speciation and host specialization in an economically important mite taxon. Molecular Phylogenetics and Evolution 66, 938940.Google Scholar
Moore, W. (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49, 718726.Google Scholar
Navajas, M., Boursot, P. (2003) Nuclear ribosomal DNA monophyly versus mitochondrial DNA polyphyly in two closely related mite species: the influence of life history and molecular drive. Proceedings of the Royal Society of London. Series B. Biological Sciences 270(Suppl 1), S124S127.Google Scholar
Navia, D., Moraes, G.J., Roderick, G. & Navajas, M. (2005) The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bulletin of Entomological Research 95, 505516.Google Scholar
Peccoud, J., Ollivier, A., Plantegenest, M. & Simon, J.C. (2009) A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proceedings of the National Academy of Sciences of the United States of America 106, 74957500.CrossRefGoogle ScholarPubMed
Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Vogler, A.P. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595609.Google Scholar
Posada, D. (2008) jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25, 12531256.Google Scholar
R Development Core Team (2011) R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing. Available at: http://www.R-project.org/.Google Scholar
Rambaut, A. & Charleston, M. (2002) TreeEdit: phylogenetic tree editor v. 1.0 alpha 10. http://evolve.zoo.ox.ac.uk/software/TreeEdit/main.html.Google Scholar
Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X. & Rozas, R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 24962497.Google Scholar
Sanderson, M.J. (2003) r8 s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301302.Google Scholar
Shaw, K.L. (2002) Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proceedings of the National Academy of Sciences of the United States of America 99, 1612216127.CrossRefGoogle ScholarPubMed
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.Google Scholar
Skoracka, A. (2008) Reproductive barriers between populations of the cereal rust mite Abacarus hystrix confirm their host specialization. Evolutionary Ecology 22, 607616.Google Scholar
Skoracka, A. & Dabert, M. (2010) The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidences from mitochondrial and nuclear DNA sequences. Bulletin of Entomological Research 100, 263272.Google Scholar
Skoracka, A., Kuczynski, L. & Magowski, W. (2002) Morphological variation in different host populations of Abacarus hystrix (Nalepa, 1896) (Acari: Prostigmata: Eriophyoidea). Experimental and Applied Acarology 26, 187193.CrossRefGoogle ScholarPubMed
Skoracka, A., Smith, L., Oldfield, G., Cristofaro, M. & Amrine, J.W. Jr (2010) Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. Experimental and Applied Acarology 51, 93113.Google Scholar
Skoracka, A., Kuczyński, L., Santos, de M.R., Dabert, M., Szydło, W., Knihinick, D., Truol, G. & Navia, D. (2012) Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari: Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebrate Systematics 26, 417433.CrossRefGoogle Scholar
Skoracka, A., Kuczyński, L., Szydło, W. & Rector, B. (2013) The wheat curl mite Aceria tosichella (Acari: Eriophyoidea) is a complex of cryptic lineages with divergent host ranges: evidence from molecular and plant bioassay data. Biological Journal of the Linnean Society 109, 165180.Google Scholar
Stover, B.C. & Muller, K.F. (2010) TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11, 7.Google Scholar
Swofford, D.L. (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), Version 4.08b. Sunderland, MA, Sinauer Associates.Google Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.CrossRefGoogle ScholarPubMed
Vidović, B., Stanisavljević, L. & Petanović, R. (2010) Phenotypic variability in five Aceria spp. (Acari: Prostigmata: Eriophyoidea) inhabiting Cirsium species (Asteraceae) in Serbia. Experimental and Applied Acarology 52, 169181.CrossRefGoogle Scholar
Wang, C.F., Kuo, C.C., Jeng, M.L. & Huang, K.W. (2011) Morphometric analyses reveal synonymy of two monotypic genera, Huangiella and Tumoris (Acari, Eriophyoidea, Eriophyidae). ZooKeys, 102, 111.Google Scholar
Wiemers, M. & Fiedler, K. (2007) Does the DNA barcoding gap exist?–a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4(8), 116.CrossRefGoogle ScholarPubMed
Xue, X.F., Song, Z.W. & Hong, X.Y. (2006) A taxonomic study of the genus Tetra Keifer (Acari: Eriophyidae: Phyllocoptinae: Anthocoptini) from Shaanxi Province, China with descriptions of nine new species. Zootaxa 1249, 122.Google Scholar
Supplementary material: File

Li Supplementary Material

Table 1

Download Li Supplementary Material(File)
File 72.7 KB
Supplementary material: File

Li Supplementary Material

Table 2

Download Li Supplementary Material(File)
File 65.5 KB