Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T12:00:48.096Z Has data issue: false hasContentIssue false

Comparing growth patterns among field populations of cereal aphids reveals factors limiting their maximum abundance

Published online by Cambridge University Press:  09 March 2007

A. Honek*
Affiliation:
Research Institute of Crop Production, Drnovska 507, 161 06 Prague 6-Ruzyně, Czech Republic
V. Jarosik
Affiliation:
Department of Zoology, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic
A.F.G. Dixon
Affiliation:
School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
*
*Fax: (+420) 2333 106 36 Email: [email protected]

Abstract

Cereal stands in central Europe are commonly infested with three species of aphids that may become serious pests. With increasing abundance, the proportion of a particular species in the total aphid population may remain constant, suggesting a density-independent exponential growth, or the proportion can change, suggesting density-dependent constraints on growth. The constraints that affect particular species, and thus their relative abundance, were studied. The proportionality between maximum abundances of the cereal aphids was studied using a 10-year census of the numbers of aphids infesting 268 winter wheat plots. For two species their abundance on leaves and ears was compared. With increasing aphid density the maximum abundance of Rhopalosiphum padi (Linnaeus) remained proportional, but not that of Sitobion avenae (Fabricius), which was constrained by the smaller surface area of ears compared to leaves. There was no evidence of inter-specific competition. Maximum abundance of R. padi and Metopolophium dirhodum (Walker) on leaves did not change proportionally as the proportion of M. dirhodum decreased with increasing overall aphid density. This decrease was probably caused by the restricted distribution of M. dirhodum, which is confined to leaves, where space is limiting. No change in proportion between populations was detected when the average densities were below 0.54 aphids per leaf or ear. Non-proportional relationships between aphid populations appeared to be due to spatial constraints, acting upon the more abundant population. Detecting the limitation of population growth can help with the assessment of when density-independent exponential growth is limited by density-dependent factors. This information may help in the development of models of cereal aphid population dynamics.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acreman, S.J., Dixon, A.F.G. (1989) The effect of temperature and host quality on the rate of increase of the grain aphid (Sitobion avenae) on wheat. Annals of Applied Biology 115, 39.CrossRefGoogle Scholar
Bänsch, R. (1964) Vergleichende Untersuchungen zur Biologie und zum Beutefangverhalten aphidivorer Coccinelliden, Chrysopiden und Syrphiden. Zoologische Jahrbücher Abteilung für Morphologie Ökologie und Systematik 91, 271340.Google Scholar
Bilde, T., Toft, S. (1997) Consumption by carabid beetles of three cereal aphid species relative to other prey types. Entomophaga 42, 2132.Google Scholar
Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A. (1983) Graphical methods for data analysis Belmont, USA Wadsworth International Group.Google Scholar
Chiverton, P.A. (1988) Searching behaviour and cereal aphid consumption by Bembidion lampros and Pterostichus cupreus, in relation to temperature and prey density. Entomologia Experimentalis et Applicata 47, 173182.CrossRefGoogle Scholar
Chongrattanameteekul, W., Foster, J.E., Araya, J.E. (1991) Biological interactions between cereal aphids Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hom., Aphididae) on wheat. Journal of Applied Entomology 111, 249253.CrossRefGoogle Scholar
Cleveland, W.S. (1979) Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74, 829836.CrossRefGoogle Scholar
Cleveland, W.S. (1985) The elements of graphing data. Monterey, USA, Wadsworth.Google Scholar
Crawley, J.M. (1993) GLIM for ecologists. London, Blackwell.Google Scholar
Dean, G.J. (1974) Effects of parasites and predators on the cereal aphids Metopolophium dirhodum (Wlk.) and Macrosiphum avenae (F.) (Hem., Aphididae). Bulletin of Entomological Research 63, 411422.CrossRefGoogle Scholar
Dean, G.J., Jones, M.G., Powell, W. (1981) The relative abundance of the hymenopterous parasites attacking Metopolophium dirhodum (Walker) and Sitobion avenae (F.) (Hemiptera: Aphididae) on cereals during 1973–79 in southern England. Bulletin of Entomological Research 71, 307315.CrossRefGoogle Scholar
Dedryver, C.A. (1978) Biologie des pucerons des céréales dans l'Ouest de la France. I. Répartition et évolution des populations de Sitobion avenae F., Metopolophium dirhodum Wlk, et Rhopalosiphum padi L., de 1974 a 1977 sur blé d'hiver dans le bassin de Rennes. Annales de Zoologie et Ecologie Animale 10, 483505.Google Scholar
Denno, R.F., McClure, M.S., Ott, J.R. (1995) Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annual Review of Entomology 40, 297331.CrossRefGoogle Scholar
Francis, B., Green, M. & Payne, C. (1994) The GLIM system. Release 4 manual. Oxford, Clarendon Press.Google Scholar
Hastie, T. & Tibshirani, R. (1990) Generalized additive models. London, Chapman and Hall.Google Scholar
Hodek, I. & Honek, A. (1996) Ecology of Coccinellidae. Dordrecht, The Netherlands, Kluwer.CrossRefGoogle Scholar
Holmes, P.R. (1988) Mobility of apterous grain aphids Sitobion avenae within wheat fields. Entomologia Experimentalis et Applicata 46, 275279.CrossRefGoogle Scholar
Honek, A. (1985) Plant density and abundance of cereal aphids (Hom., Aphidina). Zeitschrift für Angewandte Entomologie 100   309315.CrossRefGoogle Scholar
Honek, A. (1991a) Dry mass allocation in cereal plants and distribution of Metopolophium dirhodum and Sitobion avenae (Homoptera: Aphididae). Acta Entomologica Bohemoslovaca 88, 103109.Google Scholar
Honek, A. (1991b) Environment stress, plant quality and abundance of cereal aphids (Hom., Aphididae) on winter wheat. Journal of Applied Entomology 112, 6570.CrossRefGoogle Scholar
Honek, A. (1996) The relationship between thermal constants for insect development: a verification. Acta Societatis Zoologicae Bohemicae 60, 115152.Google Scholar
Honek, A., Kocourek, F. (1990) Temperature and development time in insects: a general relationship between thermal constants. Zoologische Jahrbücher Abteilung für Systematik Ökologie und Geographie der Tiere 117, 401439.Google Scholar
Honek, A., Martinkova, Z. (1999) Host-plant mediated influences on population development of Sitobion avenae (Sternorrhyncha: Aphididae). European Journal of Entomology 96, 135141.Google Scholar
Hunter, M.D. (1998) Interactions between Operophtera brumata and Tortrix viridana on oak: new evidence from time series analysis. Ecological Entomology 23, 168173.CrossRefGoogle Scholar
Jarosik, V., Honek, A., Dixon, A.F.G. (2003) Natural enemy ravine revisited: the importance of sample size for determining population growth. Ecological Entomology 28, 8591.CrossRefGoogle Scholar
Jones, M.G. (1979) Abundance of aphids on cereals from before 1973 to 1977. Journal of Applied Ecology 16, 122.CrossRefGoogle Scholar
Leather, S.R., Dixon, A.F.G. (1981) The effect of cereal growth stage and feeding site on the reproductive activity of the bird-cherry aphid, Rhopalosiphum padi. Annals of Applied Biology 97, 131141.CrossRefGoogle Scholar
Leather, S.R., Walters, K.F.A., Dixon, A.F.G. (1989) Factors determining the pest status of the bird cherry–oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Europe: a study and review. Bulletin of Entomological Research 79, 345360.CrossRefGoogle Scholar
Manly, B.F.J. (1991) Randomization and Monte Carlo methods in biology, London, Chapman and Hall.CrossRefGoogle Scholar
McCullagh, P., Nelder, J.A. (1989) Generalized linear models, London, Chapman and Hall.CrossRefGoogle Scholar
Scheller, H.V. (1984) The role of ground beetles (Carabidae) as predators on early populations of cereal aphids in spring barley. Zeitschrift für Angewandte Entomologie 97, 451463.CrossRefGoogle Scholar
Sengonca, C., Hoffmann, A., Kleinhenz, B. (1994) Laboruntersuchungen zur Entwicklung, Lebensdauer und Fruchtbarkeit der Getreideblattlausarten Sitobion avenae (F.) und Rhopalosiphum padi (L.) (Hom., Aphididae) bei verschiedenen Temperaturen. Journal of Applied Entomology 117, 224233.CrossRefGoogle Scholar
Sokal, R. & Rohlf, F.J. (1995) Biometry 3rd edn. San Francisco, California, Freeman.Google Scholar
outhwood, T.R.E. & Henderson, P.A. (2000) Ecological methods. London, Blackwell.Google Scholar
S_PLUS (2001) S-PLUS for Windows user′s guide. Seattle, Washington, Insightful Corporation.Google Scholar
Spaldon, E. (1982) Rastlinná v&ygrave;roba [Crop production]. Bratislava, PrírodaGoogle Scholar
Sunderland, K.D., Vickermann, G.P. (1980) Aphid feeding by some polyphagous predators in relation to aphid density in cereal fields. Journal of Applied Ecology 17, 389396.CrossRefGoogle Scholar
Trexler, J.C., Travis, J. (1993) Nontraditional regression analyses. Ecology 74, 16291637.CrossRefGoogle Scholar
Watt, A.D. (1979) The effect of cereal growth stages on the reproductive activity of Sitobion avenae and Metopolophium dirhodum. Annals of Applied Biology 91, 147157.CrossRefGoogle Scholar
Winder, L., Hirst, D.J., Carter, N., Wratten, S.D., Sopp, P.I. (1994) Estimating predation of the grain aphid Sitobion avenae by polyphagous predators. Journal of Applied Ecology 31, 112.CrossRefGoogle Scholar
Wratten, S.D. (1975) The nature of the effects of the aphids Sitobion avenae and Metopolophium dirhodum on the growth of wheat. Annals of Applied Biology 79, 2734.CrossRefGoogle Scholar