Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T04:53:19.140Z Has data issue: false hasContentIssue false

Co-infection with a wheat rhabdovirus causes a reduction in Mal de Río Cuarto virus titer in its planthopper vector

Published online by Cambridge University Press:  11 September 2017

A.D. Dumón*
Affiliation:
Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino 60 Cuadras km 5 ½ X5020ICA, Córdoba, Argentina
E.B. Argüello Caro
Affiliation:
Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino 60 Cuadras km 5 ½ X5020ICA, Córdoba, Argentina
M.F. Mattio
Affiliation:
Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino 60 Cuadras km 5 ½ X5020ICA, Córdoba, Argentina
V. Alemandri
Affiliation:
Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino 60 Cuadras km 5 ½ X5020ICA, Córdoba, Argentina
M. del Vas
Affiliation:
Instituto de Biotecnología (IB), CICVyA-INTA, de los Reseros y Nicolás Repetto s/n (1686), Hurlingham, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (1425 FBQ) CABA, Buenos Aires, Argentina
G. Truol
Affiliation:
Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino 60 Cuadras km 5 ½ X5020ICA, Córdoba, Argentina
*
*Author for correspondence E-mail: [email protected]

Abstract

Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) causes one of the most important diseases in maize (Zea mays L.) in Argentina and has been detected in mixed infections with a rhabdovirus closely related to Maize yellow striate virus. In nature both viruses are able to infect maize and several grasses including wheat, and are transmitted in a persistent propagative manner by Delphacodes kuscheli Fennah (Hemiptera: Delphacidae). This work describes the interactions between MRCV and rhabdovirus within their natural vector and the consequences of such co-infection regarding virus transmission and symptom expression. First- and third-instar D. kuscheli nymphs were fed on MRCV-infected wheat plants or MRCV-rhabdovirus-infected oat plants, and two latency periods were considered. Transmission efficiency and viral load of MRCV-transmitting and non-transmitting planthoppers were determined by real-time quantitative polymerase chain reaction analysis (RTqPCR). Vector transmission efficiency was related to treatments (life stages at acquisition and latency periods). Nevertheless, no correlation between transmission efficiency and type of inoculum used to infect insects with MRCV was found. Treatment by third-instar nymphs 17 days after Acquisition Access Period was the most efficient for MRCV transmission, regardless of the type of inoculum. Plants co-infected with MRCV and rhabdovirus showed the typical MRCV symptoms earlier than plants singly infected with MRCV. The transmitting planthoppers showed significantly higher MRCV titers than non-transmitting insects fed on single or mixed inocula, confirming that successful MRCV transmission is positively associated with viral accumulation in the insect. Furthermore, MRCV viral titers were higher in transmitting planthoppers that acquired this virus from a single inoculum than in those that acquired the virus from a mixed inoculum, indicating that the presence of the rhabdovirus somehow impaired MRCV replication and/or acquisition. This is the first study about interactions between MRCV and a rhabdovirus closely related to Maize yellow striate virus in this insect vector (D. kuscheli), and contributes to a better understanding of planthopper–virus interactions and their epidemiological implications.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammar, E.D. (1994) Propagative transmission of plant and animal viruses by insects: factors affecting vector specificity and competence. pp. 289331 in Harris, K.F. (Ed.) Advances in Disease Vector Research. New York, Springer.Google Scholar
Ammar, E.D., Gingery, R.E. & Nault, L.R. (1987) Interactions between Maize Mosaic and Maize Stripe viruses in their insect vector, Peregrinus maidis, and in maize. Phytopathology 77, 10511056.Google Scholar
Ammar, E.D., Tsai, C.W., Whitfield, A.E., Redinbaugh, M.G. & Hogenhout, S.A. (2009) Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts. Annual Review of Entomology 54(1), 447468.Google Scholar
Argüello-Caro, E.B., Maroniche, G.A., Dumón, A.D., Sagadin, M.B., del Vas, M. & Truol, G. (2013) High viral load in the planthopper vector Delphacodes kuscheli (Hemiptera Delphacidae) is associated with successful transmission of Mal de Río Cuarto virus . Annals of the Entomological Society of America 106(1), 9399.Google Scholar
Arneodo, J., Guzmán, F., Ojeda, S., Ramos, M.L., Laguna, I., Conci, L. & Truol, G. (2005) Transmisión del Mal de Río Cuarto virus por ninfas de primer y tercer estadio de Delphacodes kuscheli . Pesquisa Agropecuária Brasileira 40(2), 187191.CrossRefGoogle Scholar
Arneodo, J.D., Guzmán, F.A., Conci, L.R., Laguna, I.G. & Truol, G. (2002) Transmission features of Mal de Río Cuarto virus in wheat by its planthopper vector Delphacodes kuscheli . Annals of Applied Biology 141, 195200.Google Scholar
Barandoc-Alviar, K., Badillo-Vargas, I.E. & Whitfield, A.E. (2016) Interactions between insect vectors and propagative plant viruses. pp. 133180 in Czosnek, H. & Ghanim, M. (Eds) Management of Insect Pests to Agriculture. Switzerland, Springer International Publishing.Google Scholar
Bo, R., Guo, Y., Gao, F., Zhou, P., Wu, F., Meng, Z., Wei, C. & Li, Y. (2010) Multiple functions of Rice Dwarf Phytoreovirus Pns10 in suppressing systemic RNA silencing. Journal of Virology 84(24), 1291412923.Google Scholar
Cao, X., Zhou, P., Zhang, X., Zhu, S., Zhong, X., Xiao, Q., Ding, B. & Li, Y. (2005) Identification of an RNA silencing suppressor from a plant double-stranded RNA virus. Journal of Virology 79(20), 1301813027.Google Scholar
Contamaine, D., Petitjean, A.M., & Ashburner, M. (1989) Genetic resistance to viral infection: the molecular cloning of a Drosophila gene that restricts infection by the rhabdovirus sigma. Genetics 123, 525533.Google Scholar
de Assis Filho, F.M., Stavisky, J., Reitz, S.R., Deom, C.M. & Sherwood, J.L. (2005) Midgut infection by tomato spotted wilt virus and vector incompetence of Frankliniella tritici . Journal of Applied Entomology 129(9/10), 548550.Google Scholar
De Gregorio, E., Spellman, P.T., Rubin, G.M. & Lemaitre, B. (2001) Genome-wide analysis of the Drosophila immune response using oligonucleotide microarrays. Proceedings of National Academy of Sciences of the United States of America 98, 1259012595.Google Scholar
Di Rienzo, J.A. (2010) fgStatistics. Statistical software for the analysis of experiments of functional genomics. Available online at http://sites.google.com/site/fgStatistics/.Google Scholar
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. & Robledo, C.W. (2012) InfoStat Version 2012 Computer Program. Córdoba, Argentina.Google Scholar
Distéfano, A.J., Conci, L.R., Muñoz Hidalgo, M., Guzmán, F.A., Hopp, H.E. & del Vas, M. (2003) Sequence and phylogenetic analysis of genome segments S1, S2, S3 and S6 of Mal de Río Cuarto virus (MRCV), a newly accepted Fijivirus species. Virus Research 92, 113121.Google Scholar
Distéfano, A.J., Maldonado, S., Hopp, H.E. & del Vas, M. (2009) Mal de Río Cuarto virus (MRCV) genomic segment S3 codes for the major core virus protein. Virus Genes 38, 455460.Google Scholar
Dumón, A.D. (2013) Estudio de la interacción del virus del Mal de Río Cuarto (MRCV) y su vector Delphacodes kuscheli Fennah en infecciones simples y mixtas con virus de la familia Rhabdoviridae. Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba.Google Scholar
Dumón, A.D., Argüello-Caro, E.B., Alemandri, V.M., Bainotti, C., Mattio, M.F., Rodríguez, S.M., del Vas, M. & Truol, G. (2011) Identificación y caracterización biológica del Barley yellow striate mosaic virus (BYSMV): Nueva enfermedad del trigo en Argentina. Tropical Plant Pathology 36(6), 374382.Google Scholar
Dumón, A.D., Mattio, M.F., Argüello Caro, E.B., Alemandri, V.M., Puyané, N., del Vas, M., López Lambertini, P. & Truol, G. (2015) Occurrence of a closely-related isolate to Maize yellow striate virus in wheat plants. Agriscientia 32(2), 107112.Google Scholar
Dumón, A.D., Sagadín, M.B. & Truol, G.A.M. (2009) Cereal Rhabdovirus. pp. 4750 in Truol, G.A.M. (Ed.) Enfermedades virales asociadas al cultivo de trigo en Argentina: reconocimiento, importancia, formas de transmisión y manejo. Córdoba, Ediciones INTA.Google Scholar
Guo, H., Song, X., Xie, C., Huo, Y., Zhang, F., Chen, X., Geng, Y. & Fang, R. (2013) Rice yellow stunt rhabdovirus Protein 6 suppresses systemic RNA silencing by blocking RDR6-mediated secondary siRNA synthesis. MPMI 28(8), 927936.Google Scholar
Hardy, J.L., Houk, E.J., Kramer, L.D. & Reeves, W.C. (1983) Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annual Review of Entomology 28, 229262.CrossRefGoogle ScholarPubMed
Hogenhout, S.A., Ammar, E.D., Whitfield, A.E. & Redinbaugh, M.G. (2008) Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology 46, 327359.Google Scholar
Lambrechts, L., Quillery, E., Noël, V., Richardson, J.H., Jarman, R.G., Scott, T.W. & Chevillon, C. (2013) Specificity of resistance to dengue virus isolates is associated with genotypes of the mosquito antiviral gene Dicer-2 . Proceedings of the Royal Society B 280(1751), 14712954.Google Scholar
Li, S., Wang, H. & Zhou, G. (2014) Synergism between Southern rice black-streaked dwarf virus and Rice Ragged Stunt virus enhances their insect vector acquisition. Phytopathology 104, 794799.Google Scholar
Liu, F.X., Zhao, Q., Ruan, X.L., He, Y.W. & Li, H.P. (2008) Suppressor of RNA silencing encoded by Rice gall dwarf virus genome segment 11. Chinese Science Bulletin 53(3), 362369.Google Scholar
Mann, K.S., Johnson, K.N. & Dietzgen, R.G. (2015) Cytorhabdovirus phosphoprotein shows RNA silencing suppressor activity in plants, but not in insect cells. Virology 476, 413418.Google Scholar
Maroniche, G.A., Sagadin, M., Mongelli, V.C., Truol, G. & del Vas, M. (2011) Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers. Virology Journal 8, 308.CrossRefGoogle ScholarPubMed
Maurino, M.F., Laguna, G., Giolitti, F., Nome, C. & Gimenez Pecci, M.P. (2012) First occurrence of a rhabdovirus infecting maize in Argentina. Plant Disease 96(9), 1383.Google Scholar
Mongelli, V.C. (2010) Estudio funcional de las proteínas codificadas por el virus del Mal de Río Cuarto en hospedantes vegetales. Universidad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires.Google Scholar
Nagaraji, A.N. & Black, L.M. (1962) Hereditary variation in the ability of a leafhopper to transmit two unrelated plant viruses. Virology 16, 152162.Google Scholar
Ohnishi, J., Knight, L.M., Hosokawa, D., Fujisawa, I. & Tsuda, S. (2001) Replication of Tomato spotted wilt virus after ingestion by adult Thripssetosus is restricted to midgut epithelial cells. Phytopathology 91, 11491155.Google Scholar
Pfaffl, M.W., Horgan, G.W. & Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 30, 936.Google Scholar
Remes Lenicov, A.M.M. & Virla, E.G. (1999) Homópteros vectores de interés fitosanitario: un problema creciente en la Argentina (Homoptera: Auchenorrhyncha). Revista de la Sociedad Argentina de Entomología 58(1–2), 4347.Google Scholar
Remes Lenicov, A.M.M., Tesón, A., Dagoberto, E. & Huguet, N. (1985) Hallazgo de uno de los vectores del Mal de Río Cuarto en maíz. Gaceta Agronómica 5, 251258.Google Scholar
Rentería-Canett, I., Xoconostle-Cázares, B., Ruiz-Medrano, R. & Rivera-Bustamante, R.F. (2011) Geminivirus mixed infection on pepper plants: synergistic interaction between PHYVV and PepGMV. Virology Journal 8(104), 113. doi: 10.1186/1743-422X-8-104.Google Scholar
Rodríguez Pardina, P.E., Giménez Pecci, M.P., Laguna, I.G., Dagoberto, E. & Truol, G. (1998) Wheat: a new natural host for the Mal de Río Cuarto virus in the endemic disease area, Río Cuarto, Córdoba, Argentina. Plant Disease 82, 149152.Google Scholar
Ruijter, J.M., Ramaker, C., Hoogaars, W., Bakker, O., van den Hoff, M.J.B., Karlen, Y. & Moorman, A.F.M. (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research 37(6), 112.Google Scholar
Truol, G.A., Usugi, T., Hirao, J., Arneodo, J., Giménez Pecci, M.P. & Laguna, I. (2001) Transmisión experimental del virus del Mal de Río Cuarto (MRCV) por Delphacodes kuscheli . Fitopatologia Brasileira 26, 3944.Google Scholar
Tsai, C.W., Mc Graw, E.A., Ammar, E.D., Dietzgen, R.G. & Hogenhout, S.A. (2008) Drosophila melanogaster mounts a unique immune response to the rhabdovirus Sigma virus . Applied and Environmental Microbiology 74(10), 32513256.CrossRefGoogle Scholar
Wintermantel, W.M. (2005) Co-infection of Beet mosaic virus with bett yellowing viruses leads to increased symptom expression on sugar beet. Plant Disease 89(3), 325331.Google Scholar
Wu, J.G., Wang, C.Z., Du, Z.G., Cai, L.J., Hu, M.Q., Wu, Z.J., Li, Y. & Xie, L.H. (2011) Identification of Pns12 as the second silencing suppressor of Rice gall dwarf virus . Science China Life Sciences 54(3), 201208.Google Scholar
Zambon, R.A., Nandakumar, M., Vakharia, V.N. & Wu, L.P. (2005) The Toll pathway is important for an antiviral response in Drosophila . PNAS 102(20), 72577262.Google Scholar
Ziegler, R.S. & Morales, F.J. (1990) Genetic determination of replication of Rice Hoja Blanca virus within its planthopper vector, Sogatodes oryzicola . Phytopathology 80, 559566.Google Scholar