Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T17:15:08.492Z Has data issue: false hasContentIssue false

Clonal variability in the response of Sitobion avenae (Homoptera: Aphididae) to resistant and susceptible wheat

Published online by Cambridge University Press:  10 July 2009

Claudia M. Caillaud*
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de la Chaire de Zoologie de I'ENSAR, France
C.A. Dedryver
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de la Chaire de Zoologie de I'ENSAR, France
J.P. Di Pietro
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de la Chaire de Zoologie de I'ENSAR, France
J.C. Simon
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de la Chaire de Zoologie de I'ENSAR, France
F. Fima
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de la Chaire de Zoologie de I'ENSAR, France
B. Chaubet
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de la Chaire de Zoologie de I'ENSAR, France
*
Dr Claudia Marina Caillaud, Institut National de la Recherche Agronomique, Laboratoire de la Chaire de Zoologie de l'ENSAR, Domaine de la Motte-au-Vicomte, 35650 Le Rheu, France.

Abstract

The development and reproduction of 60 clones of Sitobion avenae (Fabricius), collected in the Rennes Basin, were compared on a resistant Triticum monococcum (Linnaeus) line (Tm44) and a susceptible Triticum aestivum (Linnaeus) cultivar (Arminda). All clones had lower larval survival and mean fecundity when reared on Tm44 in comparison with Arminda. They all performed equally well on Arminda whereas there was a marked and continuously distributed variation in performance parameters among clones maintained on Tm44. The plant species, from which clones originated, significantly affected aphid performances on resistant Tm44. A more detailed experiment was carried out with four clones, shown to differ in their level of fitness on Tm44. Their performances were compared on resistant (Tm44 and Tm46) and susceptible (Tm47 and Arminda) wheat genotypes. On the basis of larval development time and intrinsic rate of natural increase (rm), two types of response were distinguished among the four clones: clones Sa1 and Sa39 appeared to be less affected by Tm44 and Tm46 resistance than Sar2 and Sa48. Moreover, Tm46 was much less resistant to clone Sal than was Tm44. These results are discussed in relation to the origins of the variation in performance of S. avenae on resistant wheat, and their implications in plant breeding for resistance to S. avenae.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auclair, J.L. (1989) Host-plant resistance. pp. 225265in Minks, A.K. & Harrewijn, P.(Eds) Aphids, their biology, natural enemies and control. Volume 2C. Amsterdam, Elsevier.Google Scholar
Birch, L.C. (1948) The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17, 1526.CrossRefGoogle Scholar
Blackman, R.L. (1981) Species, sex and parthenogenesis in aphids. pp. 7585in Forey, P.L. (Ed.) The evolving biosphere. Cambridge, Cambridge University Press.Google Scholar
Blackman, R.L. (1985) Aphid cytology and genetics. pp. 171236 in Evolution and biosystematics of aphids. Proceedings of the International Aphidology Symposium.Jabolona,Poland.Google Scholar
Blackman, R.L. (1990) Specificity in aphid/plant genetic interactions, with particular attention to the role of the alate colonizer. pp. 251274in Campbell, R.K. & Eikenbary, R.D. (Eds) Aphid-plant genotype interactions, Amsterdam, Elsevier.Google Scholar
Caillaud, C.M. (1994) Analyse des mécanismes de la résistance de lignées de blé Triticum monococcum au puçeron des céréales Sitobion avenae. 83 pp. PhD thesis, Université Paris Sud (Orsay).Google Scholar
Caillaud, C.M., Di Pietro, J.P., Chaubet, B. & Pierre, J.S. (in press a) Application of discriminant analysis to electrical penetration graphs of the aphid Sitobion avenae feeding on resistant and susceptible wheat. Journal of Applied Entomology.Google Scholar
Caillaud, C.M., Pierre, J.S., Chaubet, B. & Di Pietro, J.P. (in press b) Analysis of wheat resistance to the cereal aphid Sitobion avenae using electrical penetration graphs and flowcharts combined with correspondence analysis. Entomologia Experimentalis et Applicata.Google Scholar
Dedryver, C.A. (1987) Biologie, écologie et dynamique des populations des pucerons des céréales en climat océanique. Vol. 1, 199 pp. Thése Sciences, Université Paris Sud (Orsay).Google Scholar
Dedryver, C.A. & Di Pietro, J.P. (1986) Biologie des puçerons des céréales dans l'ouest de la France: VI–Etude comparative des fluctuations au champ de Sitobion avenae F., Metopolophium dirhodum WIk. et Rhopalosiphurn padi sur différents cultivars de blé d'hiver. Agronomie, 6, 7584.CrossRefGoogle Scholar
Dedryver, C.A., Le Gallic, J.F. & Fima, F. (1994) Local intraspecific variation in the cereal aphid Sitobion avenae F. Bulletin IOBC/WPRS 17 (4), 1619.Google Scholar
Di Pietro, J.P., Soster, C., Chaubet, B. & Caillaud, C.M. (1993) The resistance of different lines of Triticum species to the aphid Sitobion avenae. Bulletin IOBC/WPRS 16 (5), 110116.Google Scholar
Dixon, A.F.G. (1985) Structure of aphid populations. Annual Review of Entomology 30, 155174.CrossRefGoogle Scholar
Dixon, A.F.G. (1987) The way of life of aphids: host specificity, speciation and distribution. pp. 197206in Minks, A.K. & Harrewijn, P. (Eds) Aphids, their biology, natural enemies and control. Volume 2A. Amsterdam, Elsevier.Google Scholar
Dreyer, D.L. & Campbell, B.C. (1987) Chemical basis of host-plant resistance to aphids. Plant, Cell and Environment 10, 353361.Google Scholar
Dunn, J.A. & Kempton, D.P.H. (1972) Resistance to attack by Brevicoryne brassicae among plants of Brussels sprouts. Annals of Applied Biology 72, 111.CrossRefGoogle Scholar
Eisenbach, J. & Mittler, T.E. (1987) Extra-nuclear inheritance in a sexually produced aphid: the ability to overcome resistance by biotype hybrids of the greenbug, Schizaphis graminum. Experientia 43, 332334.CrossRefGoogle Scholar
Gould, F. (1978) Predicting the future resistance of crop varieties to pest populations: a case study of mites and cucumbers. Environmental Entomology 7, 622626.CrossRefGoogle Scholar
Lowe, H.B.J. (1981) Resistance and susceptibility to colour forms of the aphid Sitobion avenae in spring and winter wheats (Triticum aestivum). Annals of Applied Biology 99, 8798.CrossRefGoogle Scholar
Loxdale, H.D. (1990) Estimating levels of gene flow between natural populations of cereal aphids (Homoptera: Aphididae). Bulletin of Entomological Research 80, 331338.CrossRefGoogle Scholar
Loxdale, H.D., Tarr, I.J., Weber, C.P., Brookes, C.P. & Digby, P.G.N. 1985) Electrophoretic study of enzymes from cereal aphid populations. 3. Spatial and temporal genetic variation of populations of Sitobion avenae (Hemiptera: Aphididae). Bulletin of Entomological Research 75, 121141.CrossRefGoogle Scholar
Lynch, M. & Gabriel, W. (1983) Phenotypic evolution and parthenogenesis. American Naturalist 122, 745764.CrossRefGoogle Scholar
Müller, F.P. (1971) lsolationsmechanismen zwischen bionomischen Rassen am Beispiel der Erbsenblattlaus Acyrthosiphon pisum (Harris) (Homoptera, Aphididae). Zoologisches Jahrbuch für Systematik 98, 131152.Google Scholar
Nielson, M.W. & Don, H. (1974) Probing behaviour of biotype of the spotted alfalfa aphids on resistant and susceptible alfalfa clones. Entomologia Experimentalis et Applicata 17, 477486.CrossRefGoogle Scholar
Puterka, G.J. & Peters, D.C. (1990) Sexual reproduction and inheritance of virulence in the greenbug, Schizaphis graminum (Rondani). pp. 289318in Campbell, R.K. & Eikenbary, R.D. (Eds) Aphid-plant genotype interactions, Amsterdam, ElsevierGoogle Scholar
Reinink, K., Dieleman, F.L., Jansen, J. & Montenarie, A.M. (1989) Interactions between plant and aphid genotypes in resistance of lettuce to Myzus persicae and Macrosiphum euphorbiae. Euphytica 43, 215222.CrossRefGoogle Scholar
SAS Institute (1989) SAS/STAT Users Guide, version 6. 846 pp. Cary, NC., SAS Institute.Google Scholar
Schepers, A. (1989) Chemical control. pp. 89121in Minks, A.K. & Harrewijn, P. (Eds) Aphids, their biology, natural enemies and control AmsterdamElsevier.Google Scholar
Simon, J.C., Dedryver, C.A., Pierre, J.S., Tanguy, S. & Wegorek, P. (1991) The influence of clone and morph on the parameters of intrinsic rate of increase in the cereal aphids Sitobion avenae and Rhopalosiphum padi. Entomologia Experimentalis et Applicata 58, 211220.CrossRefGoogle Scholar
Sotherton, N.W. & van Emden, H.F. (1982) Laboratory assessments of resistance to the aphids Sitobion avenae and Metopolophium dirhodum in three Triticum species and two modern wheat cultivars. Annals of Applied Biology 101, 99107.CrossRefGoogle Scholar
Tjallingii, W.F. (1978) Electronic recording of plant penetration behaviour by aphids. Entomologia Experimentalis et Applicata 24, 521530.CrossRefGoogle Scholar
Tjallingii, W.F. (1988) Electrical recording of stylet penetration activities. pp. 95108 in Minks, A.K. & Harrewijn, P. (Eds) Aphids, their biology, natural enemies and control. Amsterdam, Elsevier.Google Scholar
Via, S. (1991) The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clones. Evolution 45, 827852.CrossRefGoogle Scholar
Waines, J.G. (1983) Genetic resources in diploid wheats: the case for diploid commercial wheats 115122. Proceedings of the 6th International wheat Genetics Symposium,Kyoto, Japan.Google Scholar
Weber, G. (1985) On the ecological genetics of Sitobion avenae (F.) (Hemiptera, Aphididae). Zeitschrift für angewandte Entomologie 100, 100110.CrossRefGoogle Scholar
Wilhoit, L.R. & Mittler, T.E. (1991) Biotypes and clonal variation in greenbug (Homoptera: Aphididae) populations from a locality in California. Environmental Entomology 20, 757767.CrossRefGoogle Scholar
Wyatt, I.J. & White, P.F. (1977) Simple estimation of intrinsic increase rates for aphids and tetranychid mites. Journal of Applied Ecology 14, 757766.CrossRefGoogle Scholar