Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T18:34:44.244Z Has data issue: false hasContentIssue false

Chemical investigations of volatile kairomones produced by Hyphantria cunea (Drury), a host of the parasitoid Chouioia cunea Yang

Published online by Cambridge University Press:  15 September 2016

G. Zhu
Affiliation:
Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
L. Pan
Affiliation:
Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
Y. Zhao
Affiliation:
Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
X. Zhang
Affiliation:
Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
F. Wang
Affiliation:
Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
Y. Yu
Affiliation:
Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
W. Fan
Affiliation:
Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
Q. Liu
Affiliation:
Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
S. Zhang
Affiliation:
Natural Enemy Breeding Center of Luohe Central South Forestry, Henan 462000, China
M. Li*
Affiliation:
Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
*
*Author for correspondence Phone: 86-022-23766394 Fax: 86-022-23766539 E-mail: [email protected]

Abstract

In tritrophic ‘plants–herbivores–natural enemies’ systems, there are relatively few reports concerning the role(s) of kairomones in pupal parasitism. Chouioia cunea Yang (Hymenoptera: Eulophidae), an endoparasitic chalcid wasp, parasitizes pupae of the fall webworm (Hyphantria cunea Drury). The role of host-related kairomones was investigated using electroantennogram (EAG) and behavioral techniques. Chemicals from some host stages (pupae) and host by-products (frass), induced arrestment behavior of female parasitoids, while chemicals from prepupae, were inactive. Gas chromatography–mass spectrometry analysis of volatiles collected from pupae, frass and prepupae using solid-phase microextration revealed seven compounds with carbon chain lengths ranging from C4 to C20. All of the chemicals elicited significant EAG responses in C. cunea. Y-tube olfactometer bioassays demonstrated a significant positive response of mated female C. cunea to 1-dodecene. These data provide a better understanding of the host location mechanisms of pupal parasitoid.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

† These authors contributed equally to this work.

References

Aak, A. & Knudsen, G.K. (2012) Egg developmental status and the complexity of synthetic kairomones combine to influence attraction behaviour in the blowfly Calliphora vicina . Physiological Entomology 37, 127135.CrossRefGoogle Scholar
Afsheen, S., Wang, X., Li, R., Zhu, C.S. & Lou, Y.G. (2008) Differential attraction of parasitoids in relation to specificity of kairomones from herbivores and their by-products. Insect Science 15, 381397.CrossRefGoogle Scholar
Azandeme-Hounmalon, G.Y., Torto, B., Fiaboe, K.K.M., Subramanian, S., Kreiter, S. & Martin, T. (2016) Visual, vibratory, and olfactory cues affect interactions between the red spider mite Tetranychus evansi and its predator Phytoseiulus longipes . Journal of Pest Science 89, 137152.CrossRefGoogle Scholar
Bukovinszky, T., Poelman, E.H., Kamp, A., Hemerik, L., Prekatsakis, G. & Dicke, M. (2012) Plants under multiple herbivory: consequences for parasitoid search behaviour and foraging efficiency. Animal Behaviour 83(2), 501509.CrossRefGoogle Scholar
Chiu-Alvarado, P., Barrera, J.F. & Rojas, J.C. (2009) Attraction of Prorops nasuta (Hymenoptera: Bethylidae) a parasitoid of the coffee berry borer (Coleoptera: Curculionidae), to host-associated olfactory cues. Annals of the Entomological Society America 102, 166171.Google Scholar
Costa, A. & Reeve, J.D. (2011) Olfactory experience modifies semiochemical responses in a bark beetle predator. Journal of Chemical Ecology 37, 11661176.CrossRefGoogle Scholar
Dicke, M. & Baldwin, I.T. (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends in Plant Science 15(3), 167175.Google Scholar
Gao, B.J., Du, J., Gao, S.H. & Liu, J.X. (2010) Genetic diversity and differentiations of fall webworm (Hyphantria cunea) populations. Scientia Silvae Sinicae 8(46), 120124.Google Scholar
Giunti, G., Benelli, G., Conte, G., Mele, M., Caruso, G., Gucci, R., Flamini, G. & Canale, A. (2016) VOCs-mediated location of olive fly larvae by the braconid parasitoid Psyttalia concolor: a multivariate comparison among VOC bouquets from three olive cultivars. Biomed Research International 2016, ID, 7827615. DOI: 10.1155/2016/7827615.Google Scholar
Gonzalez, J.M., Cusumano, A., Williams, H.J., Colazza, S. & Vinson, S.B. (2011) Behavioral and chemical investigations of contact kairomones released by the mud dauber wasp Trypoxylon politum, a host of the parasitoid Melittobia digitata . Journal of Chemical Ecology 37, 629639.Google Scholar
Hofstetter, R.W., Gaylord, M.L., Martinson, S. & Wagner, M.R. (2012) Attraction to monoterpenes and beetle-produced compounds by syntopic Ips and Dendroctonus bark beetles and their predators. Agricultural and Forest Entomology 14, 207215.Google Scholar
Hou, Z.Y. & Yan, F.S. (1995) Electroantennogram response of Lysiphlebia japonica Ashmead (Homoptera: Aphidiidae) to some cotton plant volatiles and cotton aphid pheromones. Entomologia Sinica 2, 253264.Google Scholar
Ji, R., Xie, B.Y., Li, X.H., Gao, Z.X. & Li, D.M. (2007) Research progress on the invasive species, Hyphantria cunea. Entomological Knowledge 40(01), 1318.Google Scholar
Kashima, Y. & Miyazawa, M. (2014) Chemical composition and aroma evaluation of essential oils from Evolvulus alsinoides L. Chemical & Biodiversity 11(3), 396407.CrossRefGoogle ScholarPubMed
Kong, X.B., Liu, K.W., Wang, H.B., Zhang, S.F. & Zhang, Z. (2012) Identification and behavioral evaluation of sex pheromone components of the Chinese pine caterpillar moth, Dendrolimus tabulaeformis . PLoS ONE 7, e33381.Google Scholar
Liu, S.H., Norris, D.M. & Lyne, P. (1989) Volatiles from the foliage of soybean, Glycine max, and lima bean, Phaseolus lunatus: their behavioral effects on the insects Trichoplusia ni and Epilachna varivestis . Journal of Agricultural and Food Chemistry 37, 496501.CrossRefGoogle Scholar
Lo Giudice, D., Riedel, M., Rostas, M., Peri, E. & Colazza, S. (2011) Host sex discrimination by an egg parasitoid on brassica leaves. Journal of Chemical Ecology 37, 622628.Google Scholar
Malik, U., Karmakar, A. & Barik, A. (2016) Attraction of the potential biocontrol agent Galerucella placida (Coleoptera: Chrysomelidae) to the volatiles of Polygonum orientale (Polygonaceae) weed leaves. Chemoecology 26, 4558.Google Scholar
Martin, J. & Lopez, P. (2012) Supplementation of male pheromone on rock substrates attracts female rock lizards to the territories of males: a field experiment. PLoS ONE 7, e30108.Google Scholar
Moon, J.K. & Shibamoto, T. (2009) Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans. Journal of Agricultural and Food Chemistry 57(13), 58235831.Google Scholar
Mukherjee, A., Sarkar, N. & Barik, A. (2015) Momordica cochinchinensis (Cucurbitaceae) leaf volatiles: semiochemicals for host location by the insect pest, Aulacophora foveicollis (Coleoptera: Chrysomelidae). Chemoecology 25, 93104.CrossRefGoogle Scholar
Norris, D.M. & Liu, S.H. (1991) Insect repellent containing 1-dodecene. US Patent 5030660.Google Scholar
Onagbola, E.O. & Fadamiro, H.Y. (2011) Electroantennogram and behavioral responses of Pteromalus cerealellae to odor stimuli associated with its host, Callosobruchus maculatus . Journal of Stored Product Research 47, 123129.Google Scholar
Penaflor, M.F.G.V., Erb, M., Miranda, L.A., Werneburg, A.G. & Bento, J.M.S. (2011) Herbivore-induced plant volatiles can serve as host location cues for a generalist and a specialist egg parasitoid. Journal of Chemical Ecology 37, 13041313.Google Scholar
Rani, P.U., Kumari, S.I., Sriramakrishna, T. & Sudhakar, T.R. (2007) Kairomones extracted from rice yellow stem borer and their influence on egg parasitization by Trichogramma japonicum Ashmead. Journal of Chemical Ecology 33, 5973.Google Scholar
Rousse, P., Chiroleu, F., Veslot, J. & Quilici, S. (2007) The host- and microhabitat olfactory location by Fopius arisanus suggests a broad potential host range. Physiological Entomology 32(4), 313321.Google Scholar
Sacchetti, P., Rossi, E., Bellini, L., Vernieri, P., Cioni, P.L. & Flamini, G. (2015) Volatile organic compounds emitted by bottlebrush species affect the behaviour of the sweet potato whitefly. Arthropod-Plant Interactions 9, 393403.Google Scholar
Schoonhoven, L.M., van Loon, J.J.A. & Dicke, M. (2005) Host-plant selection: how to find a host plant. pp. 136160, Insect-Plant Biology. 2nd edn. Oxford, Oxford University Press.Google Scholar
Seenivasagan, T. & Paul, A.V.N. (2011) Electroantennogram and flight orientation response of Cotesia plutellae to hexane extract of cruciferous host plants and larvae of Plutella xylostella . Entomological Research 41, 717.Google Scholar
Selli, S., Canbas, A., Varlet, V., Kelebek, H., Prost, C. & Serot, T. (2008) Characterization of the most odor-active volatiles of orange wine made from a Turkish cv. Kozan (Citrus sinensis L. osbeck). Journal of Agricultural and Food Chemistry 56(1), 227234.Google Scholar
Shamilov, A.S. (2008) American white moth in Dagestan. Zashchita I Karantin Rastenii 8, 29.Google Scholar
Snyder, J.C., Antonious, G.F. & Thacker, R. (2011) A sensitive bioassay for spider mite (Tetranychus urticae) repellency: a double bond makes a difference. Experimental and Applied Acarology 55(3), 215224.Google Scholar
Sullivan, G.T., Karaca, I., Ozman-Sullivan, S.K. & Yang, Z.Q. (2011) Chalcidoid parasitoids of overwintered pupae of Hyphantria cunea (Lepidoptera: Arctiidae) in hazelnut plantations of Turkey's central Black Sea region. Canadian Entomologist 143, 411414.CrossRefGoogle Scholar
Vinson, S.B. (1991) Chemical signals used by parasitoids. Redia 74, 1542.Google Scholar
Vinson, S.B. (1998) The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biological Control 11, 7996.Google Scholar
Van Tol, R.W.H.M., Bruck, D.J., Griepink, F.C. & De Kogel, W.J. (2012) Field attraction of the vine weevil Otiorhynchus sulcatus to kairomones. Journal of Economic Entomology 105, 169175.Google Scholar
Vet, L.E.M. & Dicke, M. (1992) Infochemical use by natural enemies of herbivores in a tritrophic context. Annual Review of Entomology 37, 141172.Google Scholar
Webster, B., Bruce, T., Dufour, S., Birkemeyer, C., Birkett, M., Hardie, J.& Pickett, J. (2008) Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae . Journal of Chemical Ecology 34, 11531161.CrossRefGoogle ScholarPubMed
Willmer, P.G., Nuttman, C.V., Raine, N.E., Stone, G.N., Pattrick, J.G., Henson, K., Stillman, P., Mcilroy, L., Potts, S.G. & Knudsen, J.T. (2009) Floral volatiles controlling ant behaviour. Function Ecology 23, 888900.Google Scholar
Yang, Z.Q. (1989) A new genus and species of Eulophidae (Hymenoptera: Chalcidoidea) parasitizing Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) in China. Entomotaxonomia 11(1–2), 117130.Google Scholar
Yang, Z.Q. (1990) Anatomy of internal reproductive system of Chouioia cunea (Hymenoptera, Chalcidoidea, Eulophidae). Scientia Silvae Sinicae 31(1), 2326.Google Scholar
Yang, Z.Q. (2004) Advance in bio-control researches of the important forest insect pests with natural enemies in China. Chinese Journal of Biological Control 20(4), 221227.Google Scholar
Yang, Z.Q. & Zhang, Y.A. (2007) Researches on techniques for biocontrol of the fall webworm, Hyphantria cunea, a severe invasive insect pest to China. Chinese Bulletin of Entomology 44(4), 465471.Google Scholar
Yang, X.Q., Wei, J.R. & Yang, Z.Q. (2001) A survey on insect natural enemies of Hyphantria cunea in Da lian District, Liaoning Province. Chinese Journal of Biological Control 17(1), 4042.Google Scholar
Yang, Z.Q., Wei, J.R. & Wang, X.Y. (2006) Mass rearing and augmentative releases of the native parasitoid Chouioia cunea for biological control of the introduced fall webworm Hyphantria cunea in China. Biocontrol 51, 401418.Google Scholar
Yang, Z.Q., Wang, X.Y., Wei, J.R., Qu, H.R. & Qiao, X.R. (2008) Survey of the native insect natural enemies of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) in China. Bulletin of Entomological Research 98, 293302.Google Scholar
Zhang, X.X. & Wang, Z.J. (2009) Research progress on the Hyphantria cunea (Drury) of alien invasive species. Journal of Anhui Agricultural Sciences 37(1), 215219.Google Scholar
Zhao, Y.N., Wang, F.Z., Zhang, X.Y., Zhang, S.H., Guo, S.L., Zhu, G.P., Liu, Q. & Li, M. (2016) Transcriptome and Expression Patterns of Chemosensory Genes in Antennae of the Parasitoid Wasp Chouioia cunea. PLoS ONE 11(2), e0148159. doi: 10.1371/journal.pone.0148159.Google ScholarPubMed
Zheng, Y.N., Qi, J.Y., Sun, S.H. & Yang, C.C. (2012) Advance in research of Chouioia cunea Yang (Hymenoptera: Eulophidade) and its biocontrol application in China. Chinese Journal of Biological Control 28(2), 275281.Google Scholar
Zheng, L.X., Wu, W.J. & Fu, Y.G. (2014) (±)-2-Hexanol from Pterocarpus indicus leaves as attractant for female Aleurodicus dispersus (Hemiptera: Aleyrodidae). African Entomology 22, 267272.Google Scholar
Zong, S., Luo, Y., Zhou, J. & Liu, S. (2012) Volatile compounds of healthy and insect-damaged Hippophae rhamnoides sinensis in natural and planted forests. Zeitschrift fur Naturforschung C 67(5–6), 244248.Google Scholar
Zvereva, E.L., Rank, N.E. (2004) Fly parasitoid Megaselia opacicornis uses defensive secretions of the leaf beetle Chrysomela lapponica to locate its host. Oecologia 140, 516522.Google Scholar