Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T05:03:57.336Z Has data issue: false hasContentIssue false

Characterization of a microsatellite locus in the parasitoid wasp Aphelinus abdominalis (Hymenoptera: Aphelinidae)

Published online by Cambridge University Press:  10 July 2009

F. Vanlerberghe-Masutti
Affiliation:
INRA, Laboratoire de Biologie des Invertébrés, Equipe Biologie des Populations, 123 Bd. F. Meilland, 06606 Antibes Cedex, France
P. Chavigny
Affiliation:
INRA, Laboratoire de Biologie des Invertébrés, Equipe Biologie des Populations, 123 Bd. F. Meilland, 06606 Antibes Cedex, France

Abstract

Primers for DNA amplification using the polymerase chain reaction (PCR) were synthesized for a microsatellite locus isolated from a partial genomic library of the aphid parasitoid Aphelinus abdominalis (Dalman). Screening for genetic polymorphism at this locus in two laboratory strains of this wasp revealed the presence of two alleles different in the number of (GT) and (GGC) repeats. The relative frequencies of the two alleles were not significantly different between the two strains or between diploid females and haploid males. Heterozygosity at this microsatellite locus was estimated to be 0.40 which is within the range in other hymenopterous species. Given that A. abdominalis is a good candidate for augmentative release programmes in greenhouses against aphids, we suggest that microsatellite markers may have application in discriminating among aphelinid sibling species and strains. The markers provide a means for studying the performance and impact of selected parasitoid lines on pest dynamics in field release experiments.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berkelhamer, R.C. (1983) Intraspecific genetic variation and haplodiploidy, eusociality and polygyny in the Hymenoptera. Evolution 37, 540545.CrossRefGoogle ScholarPubMed
Carter, N., McLean, I.F.G., Watt, A.D. & Dixon, A.F.G. (1980) Cereal aphids: a case study and review. pp. 271348in Coaker, T.H. (Ed.) Applied biology, Vol. V. London, Academic Press.Google Scholar
Castanera, P., Loxdale, H.D. & Nowak, K. (1983) Electrophoretic study of enzymes from cereal aphid populations. II. Use of electrophoresis for identifying aphidiid parasitoids (Hymenoptera) of Sitobion avenae (F.) (Hemiptera: Aphididae). Bulletin of Entomological Research 73, 659665.CrossRefGoogle Scholar
Crespi, B.J. (1991) Heterozygosity in the haplodiploid Thysanoptera. Evolution 45, 458464.Google ScholarPubMed
Dallas, J.F. (1992) Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mammalian Genome 3, 452456.CrossRefGoogle ScholarPubMed
Edwards, O.R. & Hoy, M.A. (1993) Polymorphism in two parasitoids detected using random amplified polymorphic DNA polymerase chain reaction. Biological Control 3, 243257.CrossRefGoogle Scholar
Estoup, A., Solignac, M. & Cornuet, J.M. (1994) Precise assessment of the number of patrilines and of genetic relatedness in honey bee colonies. Proceedings of the Royal Society of London B258, 17.Google Scholar
Estoup, A., Garnery, L., Solignac, M. & Cornuet, J.M. (1995) Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140, 679695.CrossRefGoogle ScholarPubMed
Estoup, A., Solignac, M., Cornuet, J.M., Goudet, J. & Scholl, A. (1996) Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Molecular Ecology 5,1931.CrossRefGoogle ScholarPubMed
Gertsch, P., Pamilo, P. & Varvio, S.L. (1995) Microsatellites reveal high genetic diversity within colonies of Camponotus ants. Molecular Ecology 4, 257260.CrossRefGoogle ScholarPubMed
Graur, D. (1985) Gene diversity in Hymenoptera. Evolution 39, 190199.CrossRefGoogle ScholarPubMed
Haardt, H. & Höller, C. (1992) Differences in life history traits between isofemale lines of the parasitoid Aphelinus abdominalis (Hymenoptera: Aphelinidae). Bulletin of Entomological Research 82, 479484.CrossRefGoogle Scholar
Höller, C. & Haardt, H. (1993) Low field performance of an aphid parasitoid, Aphelinus abdominalis, efficient in the laboratory (Hym. Aphelinidae). Entomophaga 38, 115124.CrossRefGoogle Scholar
Hopper, K.R., Roush, R.T. & Powell, W. (1993) Management of genetics of biological-control introductions. Annual Review of Entomology 38, 2751.CrossRefGoogle Scholar
Hughes, C.R. & Queller, D.C. (1993) Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism. Molecular Ecology 2, 131137.CrossRefGoogle Scholar
Kazmer, D.J., Hopper, K.R., Coutinot, D.M. & Heckel, D.G. (1995) Suitability of random amplified polymorphic DNA for genetic markers in the aphid parasitoid, Aphelinus asychis Walker. Biological Control 5, 503512.CrossRefGoogle Scholar
Landry, B.S., Dextraze, L. & Boivin, G. (1993) Random amplified polymorphic DNA markers for DNA finger-printing and genetic variability assessment of minute parasitic wasp species (Hymenoptera: Mymaridae and Trichogrammatidae) used in biological control programs of phytophagous insects. Genome 36, 580587.CrossRefGoogle Scholar
Lanzaro, G.C., Zheng, L., Toure, Y.T., Traore, S.F., Kafatos, F.C. & Vernick, K.D. (1995) Microsatellite DNA and isozyme variability in a West African population of Anopheles gambiae. Insect Molecular Biology, 4, 105112.CrossRefGoogle Scholar
Lester, L.J. & Selander, R.K. (1979) Population genetics of haplodiploid insects. Genetics 92, 13291345.CrossRefGoogle ScholarPubMed
Litt, M. & Luty, J. (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics 44, 397401.Google ScholarPubMed
MacGinnis, W., Shermoen, A.W. & Beckendorf, S.K. (1983) A transposable element inserted just 5' to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34, 7584.CrossRefGoogle Scholar
Maniatis, T., Fritsch, E.F. & Sambrook, J. (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory.Google Scholar
Metcalf, R.A., Marlin, J.C. & Whitt, G.S. (1975) Low levels of genetic heterozygosity in Hymenoptera. Nature 257, 792794.CrossRefGoogle ScholarPubMed
Michel, M.F. (1969) Contribution à l'étude des Aphelinidae aphidiphages et de leurs hôtes en France (Hym. Chalcidoidea). Entomophaga 14, 439446.CrossRefGoogle Scholar
Nei, M. (1987) Molecular evolutionary genetics. New York, Columbia University Press.CrossRefGoogle Scholar
Rabasse, J.M., Lafont, J.P., Guenaoui, Y., Tardieux, I. & Lopin, N. (1989) Potentialités des parasites de pucerons comme agents de lutte biologique en culture maraîchères protégées. pp. 7378in Cavalloro, R. & Pelerents, C. (Eds) Integrated pest management in protected vegetable crops. Balkema, Rotterdam, Brookfield.Google Scholar
Roehrdanz, R.L., Reed, D.K. & Burton, R.L. (1993) Use of polymerase chain reaction and arbitrary primers to distinguish laboratory-raised colonies of parasitic Hymenoptera. Biological Control 3, 199206.CrossRefGoogle Scholar
Sanger, F., Nicklen, S. & Coulson, A.R. (1977) DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences USA 74, 54635467.CrossRefGoogle ScholarPubMed
Sheppard, W.S. & Heydon, S.L. (1986) High levels of genetic variability in three male-haploid species (Hymenoptera: Argidae, Thenthredinidae). Evolution 40, 13501353.Google Scholar
Stary, P. (1987) Aphelinidae. pp. 185188in Minks, A.K. & Harrewijin, P. (Eds) Aphids, their biology, natural enemies and control, Vol. 2B. New York, Elsevier Press.Google Scholar
Tautz, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17, 64636471.CrossRefGoogle ScholarPubMed
Thoren, P.A., Paxton, R.J. & Estoup, A. (1995) Unusually high frequency of (CT)n and (GT)n microsatellite loci in a yellowjacket wasp, Vespula rufa (L.) (Hymenoptera: Vespidae). Insect Molecular Biology 4, 141148.CrossRefGoogle Scholar
Unruh, T.R., White, W., Gonzales, D., Gordh, G. & Luck, R.F. (1983) Heterozygosity and effective size in laboratory populations of Aphidius ervi (Hym.: Aphidiidae). Entomophaga 28, 245258.CrossRefGoogle Scholar
Unruh, T.R., White, W., Gonzales, D. & Luck, R.F. (1986) Electrophoretic studies of parasitic Hymenoptera and implications for biological control, pp. 150163. in Patterson, R.S. & Rutz, D.A. (Eds) Biological control of muscoid flies. Miscellaneous Publications 61, Entomological Society of America, College Park, Maryland.Google Scholar
Unruh, T.R., White, W., Gonzales, D. & Woolley, J.B. (1989) Genetic relationships among seventeen Aphidius (Hymenoptera: Aphidiidae) populations, including six species. Annals of the Entomological Society of America 82, 754768.CrossRefGoogle Scholar
van de Zende, L. & Bijlsma, R. (1995) Limitations of the RAPD technique in phylogeny reconstruction in Drosophila. Journal of Evolutionary Biology 8, 645656.CrossRefGoogle Scholar
van den Bosch, R., Messenger, P.S. & Gutierrez, A.P. (1982) Introduction to biological control. New York, Plenum Press.CrossRefGoogle Scholar
Vanlerberghe-Masutti, F. (1994) Molecular identification and phylogeny of parasitic wasp species (Hymenoptera: Trichogrammatidae) by mitochondrial DNA RFLP and RAPD markers. Insect Molecular Biology 3, 229237.CrossRefGoogle ScholarPubMed
Walsh, P.S., Metzger, D.A. & Higuchi, R. (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506513.Google ScholarPubMed
Walton, M.P., Powell, W., Loxdale, H.D. & Allen-Williams, L. (1990) Electrophoresis as a tool for estimating levels of hymenopterous parasitism in field populations of the cereal aphid, Sitobion avenae. Entomologia Experimental et Applicata 54, 271279.CrossRefGoogle Scholar