Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-17T14:38:34.933Z Has data issue: false hasContentIssue false

Can behavioural differences in Platypus cylindrus (Coleoptera: Platypodinae) from Portugal and Tunisia be explained by genetic and morphological traits?

Published online by Cambridge University Press:  21 July 2015

A. Bellahirech*
Affiliation:
National Research Institute of Rural Engineering, Water and Forests, B.P. N°10, 2080, Ariana, Tunisia
M.L. Inácio
Affiliation:
Instituto Nacional de Investigação Agrária e Veterinária, I.P. Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
F. Nóbrega
Affiliation:
Instituto Nacional de Investigação Agrária e Veterinária, I.P. Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
J. Henriques
Affiliation:
Instituto Nacional de Investigação Agrária e Veterinária, I.P. Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
L. Bonifácio
Affiliation:
Instituto Nacional de Investigação Agrária e Veterinária, I.P. Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
E. Sousa
Affiliation:
Instituto Nacional de Investigação Agrária e Veterinária, I.P. Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
M.L. Ben Jamâa
Affiliation:
National Research Institute of Rural Engineering, Water and Forests, B.P. N°10, 2080, Ariana, Tunisia
*
*Author for correspondence Phone: (+216) 71 230 039 Fax: (+216) 71717951 E-mail: [email protected]

Abstract

Platypus cylindrus is an important wood borer of cork oak trees (Quercus suber) in the Mediterranean region, namely Portugal, Morocco and Algeria where its presence has drastically increased in the past few decades. On the contrary, the insect is not a relevant pest in Tunisia. The aim of this work is to analyze morphological and genetic differences among Tunisian and Portuguese populations in order to understand their role in the diverse population dynamics (e.g., aggressiveness) of the insect. The information could be used as a novel tool to implement protective measures. Insects were collected from cork oak stands in Tunisia (Ain Beya, Babouch and Mzara) and Portugal (Chamusca and Crato). Morphological traits of female and male mycangial pits were determined, using scanning electron microscopy but no significant differences were found. Genetic differences were analyzed using nuclear (internal simple sequence repeat polymerase chain reaction) and mitochondrial (cytochrome oxidase I (COI)) molecular markers. The results showed a very low level of intraspecific polymorphism and genetic diversity. The alignment of COI sequences showed high percentage of identical sites (99%) indicating a very low variation in nucleotide composition. Other variables related with the ecology of the insect and its associated fungi must be studied for a better understanding of the differences in the insect population's dynamic in Mediterranean countries.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, J.M. (1963) Ambrosia beetle and their fungi, with particular reference to Platypus cylindrus Fab. Symposium of Society of General Microbiology 13, 323354.Google Scholar
Balachowsky, A.S., Chevalier, M., Cuillé, J., Grison, P., Hoffmann, A., Jourdheuil, P., Labeyrie, V., Remaudière, G., Steffan, J.R., Touzeau, J. & Vilardebo, A. (1963) Famille des Platypodidae. pp. 12891291 in Balachowsky, A.S. (Ed.) Entomologie Appliquée à l'Agriculture. Tome II, Coleoptères. Paris, Masson.Google Scholar
Batra, L.R. (1963) Ecology of ambrosia fungi and their dissemination by beetles. Transactions of the Kansas Academy of Science 66, 213236.Google Scholar
Beaver, R.A. (1989) Insect-fungus relationships in the bark and ambrosia beetles. pp. 121143 in Wilding, N., Collins, N.M., Hammond, P.M. & Webber, J.F. (Eds) Insect-Fungus Interactions. London, Academic Press.Google Scholar
Belhoucine, L., Bouhraoua, R.T., Dahane, B. & Pujade-Villar, J. (2011 a) Aperçu biologique du Platypus cylindrus (Fabricius, 1792) (Coleoptera, Curculionidae: Platypodinae) dans les galeries du boisde chêne-liège (Quercus suber L.). Orsis 25, 105120.Google Scholar
Belhoucine, L., Bouhraoua, R.T., Meijer, M., Houbraken, J., Harrak, M.J., Samson, R.A., Equihua-Martinez, A. & Pujade-Villar, J. (2011 b) Mycobiota associated with Platypus cylindrus (Coleoptera: Curculionidae, Platypodidae) in cork oak stands of North West Algeria, Africa. African Journal of Microbiology Research 5, 44114423.Google Scholar
Belhoucine, L., Bouhraoua, R.T., Harrak, M.J. & Samson, R.A. (2012) Les champignons associés à Platypus cylindrus (Coleoptera: Curculionidae, Platypodidae) dans une subéraie nord ouest d'Algérie: cas des champignons nuisibles. IOBC/wprs Bulletin 76, 109116.Google Scholar
Belhoucine, L., Bouhraoua, R.T., Harrak, J.M., VIñolas, A., Equihua-Martinez, A., Valdez-Carrasco, J. & Juli Pulade-Villar, J. (2013) New contribution to knowledge of mycangia in Platypus cylindrus (Fabricius,1792), and comments about the variation of some morphological structures in Mediterranean isolated populations (Col.: Curculionidae, Platypodinae). Boletín de la Sociedad Entomológica Aragonesa 53, 125134.Google Scholar
Bellahirech, A., Inácio, M.L., Bonifácio, L., Nóbrega, F., Sousa, E. & Ben Jamâa, M.L. (2014) Comparison of fungi associated with Platypus cylindrus F. (Coleoptera: Platypodidae) in Tunisian and Portuguese cork oak stands. IOBC/wprs Bulletin 101, 149156.Google Scholar
Berryman, A.A., Raffa, K.F., Millstein, J.A. & Stenseth, N.C. (1989) Interaction dynamics of bark beetle aggregation and conifer defense rates. Oikos 56, 256263.Google Scholar
Borba, R.S., Garcia, M.S., Kovaleski, A., Oliveira, A.C., Zimmer, P.D., Castelo Branco, J.S. & Malone, G. (2005) Dissimilaridade genética de linhagens de Trichogramma Westwood (Hymenoptera: Trichogrammatidae) através de marcadores moleculares ISSR. Neotropical Entomology 34, 565569.Google Scholar
Burban, C., Petit, R.J., Carcreff, E. & Jactel, H. (1999) Molecular ecology. rangewide variation of the maritime pine bast scale Matsucoccus feytaudi Duc. (Homoptera: Matsucoccidae) in relation to the genetic structure of its host. Molecular Ecology 8, 15931602.Google Scholar
Cassier, P., Lévieux, J., Morelet, M. & Rougon, D. (1996) The Mycangia of Platypus cylindrus Fab. and P. oxyurus Dufour (Coleoptera: Platypodidae). Structure and associated fungi. Journal of Insect Physiology 42, 171179.Google Scholar
Chaar, H., Stiti, B., Montero, G. & Khaldi, A. (2009) Production and silviculture of cork oak forests in Ain Snoussi, Tunisia. pp. 96116 in Zapata-Blanco, S. (Ed.) Alcornocales e Industria Corchera. Hoy, Ayer y Mañana. Museu del Suro de Palafrugell, Palafrugell.Google Scholar
Ferreira, M.C. & Ferreira, G.W. (1989) Platypus cylindrus F. (Coleóptera: Platipodidae) Plaga de Quercus suber . Boletín de Sanidad Vegetal Plagas 4, 301305.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294297.Google Scholar
Fraedrich, S.W., Harrington, T.C., Rabaglia, R.J., Ulyshen, M.D., Mayfield, A.E., Hanula, J.L., Eickwort, J.M. & Miller, D.R. (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Disease 92, 215224.Google Scholar
Hall, T. (2007) BioEdit: Biological sequence allignement editor for Win95/98/NT/2K/XP. Available online at http://www.mbio.ncsu.edu/BioEdit/bioedit.html Google Scholar
Harrington, T.C., Aghayeva, D.A. & Fraedrich, S.W. (2010) New combinations in Raffaelea, Ambrosiella and Hyalorhinocladiella, and four new species from the red-bay ambrosia beetle, Xyleborus glabratus . Mycotaxon 111, 337361.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L. & DeWaard, J.R. (2003) Biological identification through DNA barcodes. Proceedings of the Royal Society Lond. Biological Sciences 270, 313321.Google Scholar
Inácio, M.L. (2011) Fungi associated with Platypus cylindrus (coleoptera: platypodidae) and their relation to cork oak decline. Doctorate Thesis, Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisboa, p. 169.Google Scholar
Inácio, M.L., Henriques, J. & Sousa, E. (2011) Contribution of symbiotic fungi to cork oak colonization by Platypus cylindrus (Coleoptera: Platypodidae). Silva Lusitana, n° especial, 8999.Google Scholar
Inácio, M.L., Henriques, J., Lima, A. & Sousa, E. (2012 a) Ophiostomatoid fungi associated with cork oak mortality in Portugal. IOBC/wprs Bulletin 76, 8992.Google Scholar
Inácio, M.L., Henriques, J., Nóbrega, F., Marcelino, J. & Sousa, E. (2012b) Ophiostomatoid fungi, a new threat to cork oak stands. pp. 8792 in Oliveira, M., Matos, J., Saibo, N., Miguel, C., Gil, L. (Eds) Present and Future of Cork Oak in Portugal. Oeiras, ITQB.Google Scholar
Ito, K., Nishikawa, H., Shimada, T., Ogawa, K., Minamiya, Y., Tomoda, M., Nakahira, K., Kodama, R., Fukuda, T. & Arakawa, R. (2011) Analysis of genetic variation and phylogeny of the predatory bug, Pilophorus typicus, in Japan using mitochondrial gene sequences. Journal of Insect Science 11, 18.Google Scholar
Kim, K.H., Choi, Y.J., Seo, S.T. & Shin, H.D. (2009) Raffaelea quercus-mongolicae sp. nov. associated with Platypus koryoensis on oak in Korea. Mycotaxon 110, 189197.Google Scholar
Kubono, T. & Ito, S. (2002) Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus). Mycoscience 43, 255260.Google Scholar
Murata, M., Yamada, T. & Ito, S. (2005) Changes in water status in seedlings of six species in the Fagaceae after inoculation with Raffaelea quercivora Kubono et Shin-Ito. Journal of Forest Research 10, 251255.Google Scholar
Oliveira, G. & Costa, A. (2012) How resilient is Quercus suber L. to cork harvesting? A review and identification of knowledge gaps. Forest Ecology and Management 270, 257272.Google Scholar
Pereira, H. & Tomé, M. (2004) Non-wood products: Cork Oak. pp. 613620 in Burley, J., Evans, J., Youngquist, J.A. (Eds) Encyclopedia of Forest Sciences. Oxford, Elsevier.Google Scholar
Ploetz, R.C., Hulcr, J., Wingfield, M.J. & De Beer, Z.W. (2013) Destructive tree diseases associated with ambrosia and beetles: black swan events in tree pathology? Plant Disease 95(7), 856872.Google Scholar
Ptaszyńska, A.A., Łętowski, J., Gnat, S. & Małek, W. (2012) Application of COI sequences in studies of phylogenetic relationships among 40 Apionidae species. Journal of Insect Science 12, article 16.Google Scholar
Seabra, A.F. (1939) Contribuição para a história de Entomologia em Portugal. Publicações da D.G.S.F.A. 6, 120.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of Entomological Society of America 87, 651701.Google Scholar
Smith, M.E. (2005) Mitochondrial DNAvariation among populations of the glassywinged sharpshooter, Homalodisca coagulata . Journal of Insect Science 5, 41.Google Scholar
Sousa, E.M. & Débouzie, D. (2002) Caractéristiques bioécologiques de Platypus cylindrus au Portugal. IOBC/wprs Bulletin 25, 7583.Google Scholar
Sousa, E. & Inácio, M.L. (2005) New aspects of Platypus cylindrus fab. (Coleoptera: Platypodidae): life history on Cork Oak Stands in Portugal. pp. 147168 in Lieutier, F. & Ghaioule, D. (Eds) Entomological Research in Mediterranean Forest Ecosystems. Paris, INRA.Google Scholar
Sousa, E., Debouzie, D. & Pereira, H. (1995) Le rôle de l'insecte Platypus cylindrus F. (Coleoptera, Platypodidae) dans le processus de dépérissement des peuplements de chêne-liège au Portugal. IOBC/wprs Bulletin 18, 2437.Google Scholar
Sousa, E., Inacio, M.L., El Antry, S., Bakry, M. & Kadiri, Z.A. (2005) Comparaison de la bio-écologie de l'insecte Platypus cylindrus Fab. (Col., Platypodidae) dans les subéraies portugaises et marocaines. IOBC/wprs Bull 28, 137144.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Taylor, S.J., Downie, D.A., Paterson, I.D. (2011) Genetic diversity of introduced populations of the water hyacinth biological control agent Eccritotarsus catarinensis (Hemiptera: Miridae). Biological Control 58, 330336.Google Scholar
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
Velonà, A., Luchetti, A., Ghesini, S., Marini, M. and Mantovani, B. (2011) Mitochondrial and nuclear markers highlight the biodiversity of Kalotermes flavicollis (Fabricius, 1793) (Insecta, Isoptera, Kalotermitidae) in the Mediterranean area. Bulletin of Entomological Research 101, 353364.Google Scholar
Villemant, C. & Fraval, A. (1993) La faune entomologique du chêne-liège en forêt de la Mamora (Maroc). Ecologia Mediterranea 19, 8998.CrossRefGoogle Scholar
Zietkiewicz, E., Rafalski, A., Labuda, D. (1994) Genome fingerprinting by simple sequence repeat (SSR) – anchored polymerase chain reaction amplification. Genomics 20, 176183.Google Scholar
Supplementary material: File

Bellahirech supplementary material

Table 1

Download Bellahirech supplementary material(File)
File 29.2 KB