Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T23:19:19.984Z Has data issue: false hasContentIssue false

Biochemical variants in the study of multiple insemination in Culex pipiens L. (Diptera, Culicidae)

Published online by Cambridge University Press:  10 July 2009

L. Bullini
Affiliation:
Istituto di Genetica e Istituto di Parassitologia, Università di Roma, Citta Universitaria, Rome, Italy
M. Coluzzi
Affiliation:
Istituto di Genetica e Istituto di Parassitologia, Università di Roma, Citta Universitaria, Rome, Italy
A. P. Bianchi Bullini
Affiliation:
Istituto di Genetica e Istituto di Parassitologia, Università di Roma, Citta Universitaria, Rome, Italy

Abstract

A new approach to the study of multiple insemination in mosquitoes or other organisms involving the use of electrophoretic enzyme variants is described. Data obtained on Culex pipiens L. with this technique confirm the basic monogamy of the species and suggest that multiple insemination may occur almost exclusively within 48 h after the first mating. Two independent mechanisms are probably acting in preventing multiple insemination. The first, probably the formation of a mucoid mating plug during the first copulation, allows the fertilisation of a further 10% of eggs by the second male in double inseminations; the second, the accessory gland pheromone (matrone), after an initial latent period, totally prevents a second insemination for the duration of the mosquito's life.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bryan, J. H. (1968). Results of consecutive matings of female Anopheles gambiae species B with fertile and sterile males.—Nature, Lond. 218, 489.CrossRefGoogle ScholarPubMed
Bryan, J. H. (1972). Further studies on consecutive matings in the Anopheles gambiae complex.—Nature, Lond. 239, 519520.CrossRefGoogle ScholarPubMed
Bullini, L. & Coluzzi, M. (1972). I sistemi gene-enzima nella lotta genetica.—Parassitologia 14, 6770.Google Scholar
Bullini, L. & Coluzzi, M. (1973). Electrophoretic studies on gene-enzyme systems in mosquitoes (Diptera, Culicidae).—Parassitologia 15, 221248.Google ScholarPubMed
Bullini, L.Colluzzi, M., Bianchi Bullinia, A. P. & Bleiner, G. (1971). Phosphoglucomutase polymorphism in Culex pipiens (Diptera, Culicidae).—Parassitologia 13, 439443.Google Scholar
Bullini, L., Colluzzi, M., Bianchi Bullini, A. P. & Renna, L. (1973). Stability of frequencies of phosphoglucomutase alleles in Culex pipiens breeding in ecologically different environments.—Atti Accad. naz. Lincei Rc. 53, 608611.Google Scholar
Colluzzi, M. & Bullini, L. (1971). Enzyme variants as markers in the study of pre-copulatory isolating mechanisms.—Nature, Lond. 231, 455456.CrossRefGoogle Scholar
Craig, G. B. Jr (1967). Mosquitoes: female monogamy induced by male accessory gland substance.—Science, N.Y. 156, 14991501.CrossRefGoogle ScholarPubMed
French, W. L. & Kitzmiller, J. B. (1963). Tests for multiple fertilization in Anopheles quadrimaculatus.—Proc. New Jers. Mosq. Exterm. Ass., 50, 374380.Google Scholar
Gillies, M. T. (1956). A new character for the recognition of nulliparous females of Anopheles gambiae.—Bull. Wld Hlth Org. 15, 451459.Google ScholarPubMed
Kitzmiller, J. B. & Laven, H. (1958). Tests for multiple fertilization in Culex mosquitoes by the use of genetic markers.—Am. J. Hyg. 67, 207213.Google ScholarPubMed
Patterson, R. S. & Lofgren, C. S. (1968). The potential use of sterile males to control Culex pipiens quinquefasciatus Say.—Proc. New Jers. Mosq. Exterm.Ass., 55, 170175.Google Scholar
Vandehey, R. C. & Craig, G. B. Jr (1958). Multiple fertilization demonstrated in Aedes aegypti.—Bull. ent. Soc. Am. 4, 102.Google Scholar