Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T11:48:14.653Z Has data issue: false hasContentIssue false

Basic bio-ecological parameters of the invasive Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in Phoenix canariensis under Mediterranean climate

Published online by Cambridge University Press:  08 September 2010

Ó. Dembilio
Affiliation:
Institut Valencià d'Investigacions Agràries (IVIA), Unitat Associada d'Entomologia UJI-IVIA, Centre de Protecció Vegetal i Biotecnologia, Ctra Montcada-Nàquera km 4.5, E-46113-Montcada, Spain
J.A. Jacas*
Affiliation:
Universitat Jaume I (UJI), Unitat Associada d'Entomologia UJI-IVIA, Departament de Ciències Agràries i del Medi Natural, Campus del Riu Sec, E-12071-Castelló de la Plana, Spain
*
*Author for correspondence Fax: +34 964728216 E-mail: [email protected]

Abstract

The invasive red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera, Curculionidae), is one of the most destructive pests of palms in the world. Since its detection in the Mediterranean Basin, the ornamental Phoenix canariensis Hort. ex Chabaud has become its main host. This study was aimed at determining the life cycle of R. ferrugineus in live P. canariensis palms. Egg lethal temperature threshold and thermal constant were determined in the laboratory and resulted in 13.1°C and 40.4 degree days (DD), respectively. A semi field assay was carried out in a mesh enclosure where living P. canariensis palms were artificially infested with neonate larvae at one-month intervals from June 2008 to May 2009 under natural conditions. Infested palms were dissected at different time intervals. Maximum mortality rates for R. ferrugineus were observed for palms infested either in December or January (100%), whereas those infested from April through September showed maximum survival rates. Mean monthly temperatures below 10.3°C were lethal for neonate larvae, as 4.5°C were for older immature stages. All recovered larvae could be classed according to one of 13 instars. A thermal constant of 666.5 DD was estimated for complete larval development. Pupal develoment required an additional 282.5 DD. Based on these results and on the temperatures from 46 climatic stations selected in the Iberian Peninsula, less than one generation per year can be expected in areas with mean annual temperature below 15°C and more than two where mean annual temperature is above 19°C.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, F., Hata, K. & Sone, K. (2009) Life history of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Driophtoridae), in southern Japan. Florida Entomologist 92, 421425.Google Scholar
Abe, F., Ohkusu, M., Kubo, T., Kawamoto, S., Sone, K. & Hata, K. (2010) Isolation of yeasts from palm tissues damaged by the red palm weevil and their possible effect on the weevil overwintering. Mycoscience 51, 215223.CrossRefGoogle Scholar
Avand-Faghih, A. (1996) The biology of red palm weevil, Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae) in Saravan region (Sistan and Balouchistan Province, Iran). Applied Entomology and Phytopathology 63, 1618.Google Scholar
Barrow, S. (1998) A revision of Phoenix. Kew Bulletin 53, 513575.CrossRefGoogle Scholar
Butani, D.K. (1975) Insect pests of fruit crops and their control, sapota-11. Pesticides Research Journal 9, 4042.Google Scholar
Dammerman, K.W. (1929) The Agricultural Zoology of the Malay Archipelago. 493 pp. Amsterdam, J.H. de Bussy.Google Scholar
Dembilio, Ó., Jacas, J.A. & Llácer, E. (2009) Are the palms Washingtonia filifera and Chamaerops humilis suitable hosts for the red palm weevil, Rhynchophorus ferrugineus (Coleoptera:Curculionidae)?. Journal of Applied Entomology 133, 565567.CrossRefGoogle Scholar
Dembilio, Ó., Llácer, E., Martínez de Altube, M.M. & Jacas, J.A. (2010) Field efficacy of imidacloprid and Steinernema carpocapsae in a chitosan formulation against the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Phoenix canariensis. Pest Management Science 66, 365370.CrossRefGoogle Scholar
Dyar, H.G. (1890) The number of molts of lepidopterous larvae. Psyche 5, 420422.CrossRefGoogle Scholar
EPPO (European and Mediterranean Plant Protection Organization) (2008) Data sheets on quarantine pests. Rhynchophorus ferrugineus. EPPO Bulletin 38, 5559.CrossRefGoogle Scholar
EPPO (European and Mediterranean Plant Protection Organization) (2009) EPPO Reporting Service. First record of Rhynchophorus ferrugineus in Curaçao, Netherlands Antilles, http://archives.eppo.org/EPPOReporting/2009/Rse-0901.pdf (accessed 22 May 2010).Google Scholar
Esteban-Durán, J., Yela, J.L., Beitia-Crespo, F. & Jiménez-Álvarez, A. (1998) Biología del curculiónido ferruginoso de las palmeras Rhynchophorus ferrugineus (Olivier) en laboratorio y campo: Ciclo en cautividad, peculiaridades biológicas en su zona de introducción en España y métodos biológicos de detección y posible control (Coleoptera: Curculionidae: Rhynchophorinae). Boletín de Sanidad Vegetal-Plagas 24, 737748.Google Scholar
Favà, M. (2009) Catalunya està perdent la batalla contra el morrut. Avui, 29/XII/2009.Google Scholar
Gaines, J.C. & Campbell, F.L. (1935) Dyar's rule as related to the number of instars of the corn ear worm, Heliothis obsoleta (Fab.), collected in the field. Annals of the Entomological Society of America 28, 445461.CrossRefGoogle Scholar
Ghosh, C.C. (1912) Life-histories of Indian insects, III. The rhinoceros beetle (Oryctes rhinoceros) and the red or palm weevil (Rhynchophorus ferrugineus). Memoires of the Department of Agriculture of India 2, 193217.Google Scholar
Ghosh, C.C. (1923) The palm beetles in Burma with notes on other pests. Bulletin of the Department of Agriculture 19, 140.Google Scholar
Jaya, S., Suresh, T., Sobhitha-Rani, R.S. & Sreekumar, S. (2000) Evidence of seven larval instars in the red palm weevil, Rhynchophorus ferrugineus Olivier reared on sugarcane. Journal of Entomological Research 24, 2731.Google Scholar
Kalshoven, L.G.E. (1981) Pests of Crops in Indonesia. 720 pp. Jakarta, Indonesia, P.T. Ichtiar Baru-Vanhoeve.Google Scholar
Kaakeh, W. (2005) Longevity, fecundity, and fertility of the red palm weevil, Rynchophorus ferrugineus Olivier (Coleoptera:Curculionidae) on natural and artificial diets. Emirates Journal of Agricultural Sciences 17, 2333.Google Scholar
Kranz, J.H., Schmutterer, H. & Koc, W. (1982) Enfermedades, Plagas y Malezas de los Cultivos Subtropicales. 722 pp. Berlin, Germany, Verlag Paul Parey.Google Scholar
Leefmans, S. (1920) De palmsnuitkever (Rhynchophorus ferrugineus Olivier). Mededelingen van het Instituute voor Plantenziekten 43, 190.Google Scholar
Lepesme, P. (1947) Les Insectes des Palmiers. 904 pp. Paris, France, P. Lechevalier.Google Scholar
Llácer, E., Martínez, J., Jacas, J.A. (2009) Evaluation of the efficacy of Steinernema carpocapsae in a chitosan formulation against the red palm weevil, Rhynchophorus ferrugineus, in Phoenix canariensis. BioControl 54, 559565.CrossRefGoogle Scholar
Llácer, E., Dembilio, Ó. & Jacas, J.A. (2010) Evaluation of the Efficacy of an Insecticidal Paint Based on Chlorpyrifos and Pyriproxyfen in a Microencapsulated Formulation Against Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Journal of Economic Entomology 103, 402408.CrossRefGoogle Scholar
Logan, J.A., Wallkind, D.J., Hoyt, S.C. & Tanigoshi, L.K. (1976) An analytic model for description of temperature-dependent rate phenomena in arthropods. Environmental Entomology 5, 11331140.CrossRefGoogle Scholar
Logan, J.A., Bentz, B.J., Vandygriff, J.C. & Turner, D.L. (1998) General program for determining instar distributions from headcapsule widths: example analysis of mountain pine beetle (Coleoptera: Scolytidae) data. Environmental Entomology 27, 555563.CrossRefGoogle Scholar
Martín-Molina, MM. (2004) Biología y ecología del curculiónido rojo de las palmeras, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Dryophthoridae). PhD thesis, Universidad de Almería, Almería, Spain.Google Scholar
Martín, M.M. & Cabello, T. (2006) Manejo de la cría del picudo rojo de la palmera, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera, Dryophthoridae), en dieta artificial y efectos en su biometría y biología. Boletín de Sanidad Vegetal de Plagas 32, 631641.Google Scholar
McClellan, Q.C. & Logan, J.A. (1994) Instar determination for the gypsy moth (Lepidoptera: Lymantriidae) based on the frequency distribution of head capsule widths. Environmental Entomology 23, 248253.CrossRefGoogle Scholar
Morici, C. (1998) Phoenix canariensis in the wild. Principes 42, 8593Google Scholar
Ninyerola, M., Pons, X. & Roure, J.M. (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra, Barcelona, (http://www.opengis.uab.es/wms/iberia/index.htm (accessed 22 May 2010).Google Scholar
Nirula, K.K. (1956) Investigations on the pests of coconut palm. Part IV. Rhynchophorus ferrugineus. Indian Coconut Journal 9, 229247.Google Scholar
Rahalkar, G.W., Harwalkar, M.R. & Rananavare, H.O. (1972) Development of red palm weevil, Rhynchophorus ferrugineus Oliv. on sugarcane. Indian Journal Entomology 34, 213215.Google Scholar
Salama, H., Hamdy, M. & Magd El-Din, M. (2002) The termal constant for timing the emergente of the red palm weevil, Rhynchophorus ferrugineus (Oliv.), (Coleoptera, Curculionidae). Journal of Pest Science 75, 2629.CrossRefGoogle Scholar
Salama, H.S., Zaki, F.N. & Abdel-Razek, A.S. (2009) Ecological and biological studies on the red palm weevil Rhynchophorus ferrugineus (Olivier). Archives of Phytopathology and Plant Protection 42, 392399.CrossRefGoogle Scholar
Shahina, F., Salma, J., Mehreen, G., Bhatti, M.I. & Tabassum, K.A. (2009) Rearing of Rhynchophorus ferrugineus in laboratory and field conditions for carrying out various efficacy studies using EPNs. Pakistan Journal of Nematology 27, 219228.Google Scholar
Snodgrass, R.E. & Eickwort, G. (1993) Principles of Insect Morphology. 667 pp. Ithaca, NY, Cornell University Press.Google Scholar
Stamp, N.E. (1990) Growth versus molting time of caterpillars as a function of temperature, nutrient concentration and the phenolic rutin. Oecologia 82, 107113.CrossRefGoogle ScholarPubMed
Tejedo, V. (2006) Current situation of the Red Palm Weevil (Rhynchophorus ferrugineus) in the Comunidad Valenciana. pp. 917 in Jornada Internacional sobre el Picudo Rojo de las Palmeras, Valencia, Spain, Fundación Agroalimed.Google Scholar
UNESCO (United Nations Educational, Scientific and Cultural Organization) (2010) World Heritage. http://whc.unesco.org/en/list/930 (accessed 19 February 2010).Google Scholar
Varley, G.C., Gradwell, G.R., & Hassell, M.P. (1974) Insect Population Ecology: An Analytical Approach. 212 pp. Berkeley, CA, USA, University of California Press.Google Scholar
Viado, G.B. & Bigornia, A.E. (1949) A biological study of the Asiatic palm weevil, Rhynchophorus ferrugineus (Olivier), (Curculionidae, Coleoptera). Philippine Agriculturist 33, 127.Google Scholar
Wigglesworth, V.B. (1954) The Physiology of Insect Metamorphosis. 152 pp. Cambridge, UK, Cambridge University Press.Google Scholar