Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T11:26:26.255Z Has data issue: false hasContentIssue false

Ballooning dispersal using silk: world fauna, phylogenies, genetics and models

Published online by Cambridge University Press:  09 March 2007

J.R. Bell*
Affiliation:
Warwick HRI, Wellesbourne, Warwick, CV35 9EF, UK
D.A. Bohan
Affiliation:
Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
E.M. Shaw
Affiliation:
Manchester Metropolitan University, Department of Environmental and Geographical Sciences, Chester Street, Manchester, M1 5GD, UK
G.S. Weyman
Affiliation:
Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
*
*Fax: +44 (0) 1789 470552 E-mail: [email protected]

Abstract

Aerial dispersal using silk (‘ballooning’) has evolved in spiders (Araneae), spider mites (Acari) and in the larvae of moths (Lepidoptera). Since the 17th century, over 500 observations of ballooning behaviours have been published, yet there is an absence of any evolutionary synthesis of these data. In this paper the literature is reviewed, extensively documenting the known world fauna that balloon and the principal behaviours involved. This knowledge is then incorporated into the current evolutionary phylogenies to examine how ballooning might have arisen. Whilst it is possible that ballooning co-evolved with silk and emerged as early as the Devonian (410–355 mya), it is arguably more likely that ballooning evolved in parallel with deciduous trees, herbaceous annuals and grasses in the Cretaceous (135–65 mya). During this period, temporal (e.g. bud burst, chlorophyll thresholds) and spatial (e.g. herbivory, trampling) heterogeneities in habitat structuring predominated and intensified into the Cenozoic (65 mya to the present). It is hypothesized that from the ancestral launch mechanism known as ‘suspended ballooning’, widely used by individuals in plant canopies, ‘tip-toe’ and ‘rearing’ take-off behaviours were strongly selected for as habitats changed. It is contended that ballooning behaviour in all three orders can be described as a mixed Evolutionary Stable Strategy. This comprises individual bet-hedging due to habitat unpredictability, giving an underlying randomness to individual ballooning, with adjustments to the individual ballooning probability being conferred by more predictable habitat changes or colonization strategies. Finally, current methods used to study ballooning, including modelling and genetic research, are illustrated and an indication of future prospects given.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, G., Crooker, A.R. (1985) Internal anatomy Spider mites. Their biology, natural enemies and control. Volume 1A. The Tetranychidae 2962 Helle W. Sabelis M.W. Oxford Elsevier.Google Scholar
Allan, P.B.M. (1943) The travel of larvae. Entomologist 76, 159164.Google Scholar
Arderon, W.M. (1747) A supposition how the white matter is produced which floats about in the air in autumn. Philosophical Transactions of the Royal Society of London 44, 428429.Google Scholar
Baerg, W.J. (1928) Some studies of a trapdoor spider (Araneae: Aviculariidae). Entomological News 39, 14.Google Scholar
Baker, R.R. (1978) Evolutionary ecology of animal migration. London, Hodder & Stoughton.Google Scholar
Baker, E.W., Tuttle, D.M. (1994) A guide to the spider mites (Tetranychidae) of the United States pp. 347West Bloomfield, Indira Publication House Publshing House.Google Scholar
Barel, C.J.A. (1973) Studies on dispersal of Adoxophyes orana F.V.R. in relation to the population sterilization technique. Mededelingen Landbhoogesch, Wageningen 73, 1107.Google Scholar
Barnard, P.C. (1999) Identifying British insects and arachnids: an annotated bibliography of key works CambridgeCambridge University Press.Google Scholar
Barrett, P.M., Willis, K.J. (2001) Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biological Reviews 76, 411447.CrossRefGoogle ScholarPubMed
Barth, F.G., Komarek, S., Humphrey, J.A.C., Treidler, B. (1991) Drop and swing dispersal behavior of a tropical wandering spider: experiments and numerical model. Journal of Comparative Physiology A 169, 313322.CrossRefGoogle Scholar
Batzer, H.O. (1968) Hibernation site and dispersal of spruce budworm larvae as related to damage of sapling balsam fir. Economic Entomology 61, 216220.CrossRefGoogle Scholar
Bechstein, J.M. (1799) Observations on the true origin of the gossamer Philosophical Magazine, London 4, 119124.CrossRefGoogle Scholar
Bell, J.R., Bohan, D.A., Le Fevre, R., Weyman, G.S. (in press) current authors. Can simple experimental robotics simulate the dispersal phase of spider ballooners? Journal of Arachnology.Google Scholar
Bennett, R. (2003) Mass dispersal of erigonine spiders from a clover field in British Columbia, Canada. Newsletter of the British Arachnological Society 97, 23.Google Scholar
Berger, A. (1989) Ballooning activity of Chilo partellus larvae in relation to size of mother, egg batches, eggs and larvae and age of mother. Entomologia Experimentalis et Applicata 50, 125132.CrossRefGoogle Scholar
Berger, A. (1992) Larval movements of Chilo partellus (Lepidoptera, Pyralidae) within and between plants: timing, density responses and survival. Bulletin of Entomological Research 82, 441448.CrossRefGoogle Scholar
Berger, A. (1994) Larval migration and pest-management of the spotted stem-borer Chilo partellus (Swinhoe) (Lepidoptera, Pyralidae). International Journal of Pest Management 40, 612.CrossRefGoogle Scholar
Bergh, J.C. (2001) Ecology and aerobiology of dispersing citrus rust mites (Acari: Eriophyidae) in central Florida. Environmental Entomology 30, 318326.CrossRefGoogle Scholar
Bergh, J.C., McCoy, C.W. (1997) Aerial dispersal of citrus rust mite (Acari: Eriophyidae) from Florida citrus groves. Environmental Entomology 26, 256264.CrossRefGoogle Scholar
Berland, L. (1933) Transport involontaire d'arthropodes par aeroplanes et par les cournats aeriens a haute altitude. Compte Rendu Sommaire des Seances de la Société de Biogeographie 84, 4951.Google Scholar
Bishop, L., Riechert, S.E. (1990) Spider colonization of agroecosystems: mode and source. Environmental Entomology 19, 17381745.CrossRefGoogle Scholar
Bishop, L. (1990) Meteorological aspects of spider ballooning. Environmental Entomology 19, 13821387.CrossRefGoogle Scholar
Blackwall, J. (1827) Observations and experiments made with a view to ascertain the means by which the spiders that produce gossamer effect their aerial excursions. Transactions of the Linnean Society of London 15, 449459.CrossRefGoogle Scholar
Blackwall, J. (1831) An examination of Mr Virey's observations on aeronautic spiders, published in the Bulletin des Sciences Naturelles. Philosophical Magazine London 10, 180187.CrossRefGoogle Scholar
Blackwall, J. (1834a) Observations and experiments on aeronautic spiders pp. 257276 in Researches in Zoology. London, John van Voorst (an entire volume of collected works of the author).Google Scholar
Blackwall, J. (1834b) Injury done to the foliage of the oaks pp. 207215 in Researches in Zoology. LondonJohn van Voorst.Google Scholar
Blackwall, J. (1864) A history of the spiders of Great Britain and Ireland. London, Ray Society.Google Scholar
Blandenier, G., Fürst, P.A. (1998) Ballooning spiders caught by a suction trap in an agricultural landscape in Switzerland pp. 177186 in Proceedings of the 17th European Colloquium of Arachnology14–18th July 1997EdinburghBritish Arachnological Society.Google Scholar
Bolland, H.R., Flechtmann, C.H.W., Gutierrez, J. (1998) World catalogue of the spider mite family (Acari: Tetranychidae). Leiden, Brill Academic Publishers.Google Scholar
Bon de Saint-Hilaire, F.X. (1710) On the usefulness of the silk of spiders Philosophical Transactions of the Royal Society of London 27, 215.Google Scholar
Bonnet, P. (1945) Bibliographia Araneorum. Analyse methodique de toute la literature araneologique Jusqu'en 1939. Tome 1 Toulouse Les Frères Douladoure.Google Scholar
Bonte, D., Vandenbroecke, N., Lens, L., Maelfait, J.-P. (2003a) Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proceedings of the Royal Society of London B 270, 16011607.CrossRefGoogle ScholarPubMed
Bonte, D., Lens, L., Maelfait, J.-P., Hoffman, M., Kuijken, E. (2003b) Patch quality and connectivity influence spatial dynamics in a dune wolfspider. Oecologia 135, 227–223.CrossRefGoogle Scholar
Bonte, D., Deblauwe, I., Maelfait, J.-P. (2003c) Environmental and genetic background of tiptoe-initiating behaviour in the dwarfspider Erigone atra. Animal Behaviour 66, 169174.CrossRefGoogle Scholar
Boykin, L.S., Cambell, W.V. (1984) Wind dispersal of the two-spotted spider mite (Acari: Tetranychidae) in North Carolina peanut fields. Environmental Entomology 13, 221227.CrossRefGoogle Scholar
Boyle, W.W. (1957) On the mode of dissemination of the two spotted spider mite Tetranychus telarius. Proceedings of the Hawaiian Entomological Society 16, 261268.Google Scholar
Braendegaard, J. (1937) Observations on spiders starting off on ballooning excursions. Videnskabelige Meddelelser fra den Naturhistorike Forening i Kjobenhavn 101, 115117.Google Scholar
Braendegaard, J. (1938) Aeronautic spiders in the Arctic. Meddelelser om Gronland Bioscience 119, 19.Google Scholar
Brandenburg, R.L., Kennedy, G.G. (1982) Intercrop relationships and spider mite dispersal in a corn/peanut agro-ecosystem. Entomologia Experimentalis et Applicata 32, 269276.CrossRefGoogle Scholar
Briggs, J.B. (1957) Some features of the biology of the winter moth (Operophtera brumata (L.)) on top of fruits. Journal of Horticultural Science 32, 108125.CrossRefGoogle Scholar
Bristowe, W.S. (1930) The distribution and dispersal of spiders. Proceedings of the Royal Society of London 43, 633657.Google Scholar
Bristowe, W.S. (1931) The migration of spiders. Entomologist Monthy Magazine 67, 206208.Google Scholar
Bristowe, W.S. (1941) The comity of spiders London Ray Society.Google Scholar
Bristowe, W.S. (1958) The world of spiders London Collins.Google Scholar
Brown, C.E. (1962) The life history and dispersal of the Bruce spanworm, Operophtera bruceata (Lep.: Geometridae). Canadian Entomologist 94, 11031107.CrossRefGoogle Scholar
Brunet, B. (1994) The silken web. Sydney, Reed Books.Google Scholar
Buckler, W. (18851901) The larvae of the British butterflies and moths (Volumes 19). London, Ray Society.Google Scholar
Burgess, A.F. (1913) The dispersion of the gypsy moth. US Department of Agriculture Bureau of Entomology Bulletin 1913, 119.Google Scholar
Cantabrigian, (aka Lister) (1669) Some observations concerning the odd turn of some shell snails and the darting of spiders. Philosophical Transactions of the Royal Society of London 4, 10111016.Google Scholar
Capinera, J.L. & Barbosa, P. (1976) Dispersal of first instar gypsy moth larvae in relation to population quality. Oecologia 26, 5364.CrossRefGoogle ScholarPubMed
Carolan, M.W. (1817) On the power which spiders have of conveying their threads from one point to another and of flying through the air. Annals of Philosophy 9, 306310.Google Scholar
Carriere, Y. (1992) Larval dispersal from potential hosts within a population of a generalist herbivore, Choristoneura rosaceana. Entomologia Experimentalis et Applicata 65, 1119.CrossRefGoogle Scholar
Coad, B.R. (1931) Insects captured by airplane. Yearbook of the United States Department of Agriculture 1931, 320323.Google Scholar
Coddington, J.A. & Levi, H.W. (1991) Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22, 443447.CrossRefGoogle Scholar
Cohen, M.B., Romena, A.M & Gould, F. (2000) Dispersal by larvae of the stem borers Scirpophaga incertulas (Lepidoptera: Pyralidae) and Chilo suppressalis (Lepidoptera: Crambidae) in plots of transplanted rice. Environmental Entomology 29, 958971.CrossRefGoogle Scholar
Coleman, R.B. (1976) Notes on the aerial dispersion of spiders. Newsletter of the British Arachnological Society 15, 89.Google Scholar
Collins, C.W. (1917) Methods used in determining wind dispersion of the gypsy moth and some other insects. Journal of Economic Entomology 27, 320327.CrossRefGoogle Scholar
Collins, C.W. & Baker, W.L. (1934) Exploring the upper air for wind-borne gypsy moth larvae. Journal of Economic Entomology 27, 320327.CrossRefGoogle Scholar
Comins, H.N., Hamilton, W.D. & May, R.M. (1980) Evolutionary stable dispersal strategies. Journal of Theoretical Biology 82, 205230.CrossRefGoogle Scholar
Common, I.F.B. (1990) Moths of Australia. Victoria, Melbourne University Press.Google Scholar
Comstock, J.H. (1948) The spider book. New York, Comstock Publications.Google Scholar
Cox, D.L. & Potter, D.A. (1986) Aerial dispersal behaviour of larval bagworms Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae). Canadian Entomologist 118, 525536.CrossRefGoogle Scholar
Coyle, F.A. (1983) Aerial dispersal by mygalomorph spiderlings (Araneae, Mygalomorphae). Journal of Arachnology 11, 283286.Google Scholar
Coyle, F.A. (1985) Ballooning behavior of Ummidia spiderlings (Araneae, Ctenizidae). Journal of Arachnology 13, 137138.Google Scholar
Coyle, F.A., Greenstone, M.H., Hulsch, A.L. & Morgan, C.L. (1985) Ballooning mygalomorphs: estimates of the masses of Sphodros and Ummidia ballooners (Araeneae: Atypidae, Ctenizidae). Journal of Arachnology 13, 291296.Google Scholar
Crane, P.R., Friis, E.M., Pedersen, K.R. (1995) The origin and early diversification of angiosperms. Nature 374, 2733.CrossRefGoogle Scholar
Craig, C.L. (1997) Evolution of arthropod silks. Annual Review of Entomology 42, 231267.CrossRefGoogle ScholarPubMed
Crompton, J. (1955) Life of the spider. London, Fontana Books.Google Scholar
Crouch, T., Lubin, Y. & Bodasing, M. (1998) Dispersal in the social spider Stegodyphus mimosarum Pavesi, 1883 (Araneae: Eresidae). Durban Museum Novitates 23, 5255.Google Scholar
Dalingwater, J.E. (1984) White holes and pink dwarfs. Newsletter of the British Arachnological Society 41, 56.Google Scholar
Darwin, C. (1839) Journal of researches into the geology and natural history of the various countries visited by H.M.S. Beagle under the command of Captain Fitzroy R.N. from 1832 to 1836 LondonHenry Colburn.Google Scholar
Darwin, C. (1879) A naturalist's voyage. LondonJohn Murray.Google Scholar
De Keer, R. & Maelfait, J.-P. (1987) Life history of Oedothorax fuscus (Blackwall, 1834) (Araneae, Linyphiidae) in a heavily grazed pasture. Revue d'Ecologie et de Biologie du Sol 24, 171185.Google Scholar
De Keer, R. & Maelfait, J.-P. (1988) Laboratory observations on the development and reproduction of Erigone atra Blackwall 1833 (Araneae, Linyphiidae). Bulletin of the British Arachnological Society 7, 237242.Google Scholar
Dean, D.A. & Sterling, W.L. (1985) Size and phenology of ballooning spiders at two locations in eastern Texas. Journal of Arachnology 13, 111120.Google Scholar
Decae, A.E. (1987) Dispersal: ballooning and other mechanisms. pp. 348356 in Nentwig, W. Ecophysiology of spiders. Berlin, Springer Verlag.CrossRefGoogle Scholar
Den Boer, P.J. (1990) The survival value of dispersal in terrestrial arthropods. Biological Conservation 54, 175192.CrossRefGoogle Scholar
Dinter, A. (1996) Population dynamics and eggsac parasitism of Erigone atra (Blackwall) in winter wheat. pp. 153164 in Proceedings of The 18th International Congress of Arachnology, 1995 Revue Suisse De Zoologie, Vol. Hors Série Switzerland Geneva.Google Scholar
Dippenaar-Schoeman, A.S. & Jocqué, R. (1997) African spiders. Pretoria ARC-Plant Protection Research Institute.Google Scholar
Diss, A.L., Kunkel, J.G., Montgomery, M.E. & Leonard, D.E. (1996) Effects of maternal nutrition and egg provisioning on parameters of larval hatch, survival and dispersal in the gypsy moth Lymantria dispar L. Oecologia 106, 470477.CrossRefGoogle ScholarPubMed
Drake, V.A., Farrow, R.A. (1988) The influence of atmospheric structure and motions on insect migration. Annual Review of Entomology 33, 183210.CrossRefGoogle Scholar
Duffey, E. (1956) Aerial dispersal in a known spider population. Journal of Animal Ecology 25, 85111.CrossRefGoogle Scholar
Duffey, E. (1963) A mass dispersal of spiders. Transactions of the Norfolk Norwich Naturalists' Society 20, 3843.Google Scholar
Duffey, E. (1979) Aerial dispersal by linyphiid spiders from filter beds on the Birmingham sewage works. Newsletter of the British Arachnological Society 26, 34.Google Scholar
Duffey, E. (1994) Ballooning in spiders. Newsletter of the British Arachnological Society 70, 56.Google Scholar
Duffey, E. (1997) Spider adaptation to artificial biotopes: the fauna of percolating filter beds in a sewage treatment works. Journal of Applied Ecology 34, 11901202.CrossRefGoogle Scholar
Duffey, E. (1998) Aerial dispersal in spiders. pp. 187192in Proceedings of the 17th European Colloquium of Arachnology14–18th July 1997.BAS, Edinburgh.Google Scholar
Dwyer, G., Elkinton, J.S. (1995) Host dispersal and the spatial spread of insect pathogens. Ecology 76, 12621275.CrossRefGoogle Scholar
Ebeling, W. (1934) Observations on a method of dissemination employed by mites. Pan-Pacific Entomologist 10, 89.Google Scholar
Eberhard, W.G. (1987) How spiders initiate airborne lines. Journal of Arachnology 15, 19.Google Scholar
Edland, T. (1971) Wind dispersal of the winter moth larvae Operopthera brumata L. (Lep. Geometridae) and its relevance to control measures. Norsk Entomologisk Tidsskrift 18, 103105.Google Scholar
Edmonds, R.L. (1980) Airborne dispersal of Douglas-fir tussock moth larvae. pp. 201211 in Proceedings of the 1st International Conference on AerobiologyMunich1978. Germany, Federal Environmental Agency of West Germany.Google Scholar
Embree, D.G. (1970) The diurnal and seasonal pattern of hatching of winter moth eggs, Operopthera brumata (Geometridae: Lepidoptera). Canadian Entomologist 102, 759768.CrossRefGoogle Scholar
Embree, D.G. (1991) The winter moth Operopthera brumata in eastern Canada, 1962–1988. Forest Ecology and Management 39, 4754.CrossRefGoogle Scholar
Emerton, J.H. (1871) Flying spiders. American Naturalist 5, 148155.CrossRefGoogle Scholar
Emerton, J.H. (1908) Autumn flight of spiders. Pysche 15, 121.Google Scholar
Emerton, J.H. (1919) On the flights of spiders in the autumn of 1918. Entomological News 30, 165168.Google Scholar
Enock, F. (1885) The life history of Atypus piceus. Transactions of the Entomological Society of London 1885, 389420.CrossRefGoogle Scholar
Fabre, J.H. (1918) The life of the spider. New York, Dodd, Mead & Co.Google Scholar
Falconer, W. (1928) The evolution and survival of the spider. Naturalist 1928, 714.Google Scholar
Fleschener, C.A., Bagley, M.E., Richer, D.W. & Hall, J.C. (1956) Air drift of spider mites. Journal of Economic Entomology 49, 624627.CrossRefGoogle Scholar
Follner, K. & Klarenberg, A.J. (1995) Aeronautic behaviour in the wasp-like spider Argiope bruennichi (Scopoli) (Araneae. Argiopidae). pp. 6672 in Proceedings of the 15th European Colloquium of Arachnology.Czech Republic, Budejovice.Google Scholar
Forster, R.R. (1971) Notes on an airborne spider found in Antarctica. Pacific Insects Monograph 25, 119120.Google Scholar
Forster, R. & Forster, L. (1999) Spiders of New Zealand and their worldwide kin Otago University of Otago Press.Google Scholar
Fosberg, M.A. & Petersen, M. (1986) Modeling airborne transport of gypsy moth (Lepidoptera: Lymantriidae) larvae. Agriculture and Forest Meterology 38, 18.CrossRefGoogle Scholar
Freeman, J.A. (1946) The distribution of spiders and mites up to 300 ft. in the air. Journal of Animal Ecology 15, 6974.CrossRefGoogle Scholar
Gerson, U. (1985) Webbing. pp. 223232 in Helle, W. Sabelis, M.W. (Eds) Spider mites. Their biology, natural enemies and control. Volume 1A. The Tetranychidae OxfordElsevier.Google Scholar
Ghent, A.W. (1999) Studies of ballooning and resulting patterns of locally contagious distribution of the bagworm Thyridopteryx ephemeraeformis (Haworth) (Lepidoptera: Psychidae). American Midland Naturalist 142, 291313.CrossRefGoogle Scholar
Glick, P.A. (1939) The distribution of insects, spiders and mites in the air. Technical Bulletin of the United States Department of Agriculture 673, 1150.Google Scholar
Glick, P.A. (1965) A review of collections of Lepidoptera taken by airplane. Journal of the Lepidopterist Society 19, 129137.Google Scholar
Glick, P.A. & Nobel, L.W. (1961) Airborne movements of the pink bollworm and other arthropods. Technical Bulletin of the United States Department of Agriculture 1255, 120.Google Scholar
Greenstone, M.H. (1982) Ballooning frequency and habitat predictability in two wolf spider species (Lycosidae: Pardosa). Florida Entomologist 65, 8389.CrossRefGoogle Scholar
Greenstone, M.H. (1990) Meteorological determinants of spider ballooning: the roles of thermals vs. the vertical windspeed gradient in becoming airborne. Oecologia 84, 164168.CrossRefGoogle ScholarPubMed
Greenstone, M.H., Morgan, C.E., Hultsch, A.L., Farrow, R.A. & Dowse, J.E. (1987) Ballooning spiders in Missouri, USA, and New South Wales, Australia: family and mass distributions. Journal of Arachnology 15, 163170.Google Scholar
Gressitt, J.L. (1965) Biogeography and ecology of land arthropods of Antarctica Biology and ecology of Anarctica. pp. 431490 in van Miegham, J. van Oye, P. (Eds) Biology and ecology of Anarctica. Monographiae Biologicae 15.W.. Holland. Junk.Google Scholar
Gressitt, J.L., Leech, R.E. & O'Brien, C.W. (1960) Trapping of air-borne insects in the Antarctic area. Pacific Insects 2, 245250.Google Scholar
Gressitt, J.L., Leech, R.E., Leech, T.S., Sedlacek, J. & Wise, K.A.J. (1961) Trapping of air-borne insects in the Antarctic area (part 2). Pacific Insects 3, 563589.Google Scholar
Gressitt, J.L., Coatsworth, J. & Yoshimoto, C.M. (1962) Airborne insects trapped on ‘monsoon expedition’. Pacific Insects 4, 319323.Google Scholar
Gutierrez, J. & Helle, W. (1985) Evolutionary changes in the Tetranychidae. pp. 91107 in Helle, W. Sabelis, M.W. (Eds) Spider mites. Their biology, natural enemies and control. Volume 1A. The Tetranychidae. Oxford, Elsevier.Google Scholar
Halley, J.M., Thomas, C.F.G. & Jepson, P.C. (1996) A model for the spatial dynamics of linyphiid spiders in farmland. Journal of Applied Ecology 33, 471492.CrossRefGoogle Scholar
Hanna, S.R., Britter, R., Franzese, P. (2003) A baseline urban dispersion model evaluated with Salt Lake City and Los Angeles tracer data. Atmospheric Environment 37, 50695082.CrossRefGoogle Scholar
Hanski, I. (1999) Metapopulation ecology. Oxford, Oxford University Press.CrossRefGoogle Scholar
Hardy, A.C. & Milne, P.S. (1938) Studies in the distribution of insects by aerial currents. Journal of Animal Ecology 7, 199229.CrossRefGoogle Scholar
Hardy, A.C. & Cheng, L. (1986) Studies in the distribution of insects by aerial currents. III. Insect drift over the sea. Ecological Entomology 11, 283290.CrossRefGoogle Scholar
Harrell, J.C. & Yoshimoto, C.M. (1964) Trapping of air-borne insects on ships in the Pacific. Part 5. Pacific Insects 6, 274282.Google Scholar
Harrison, S. (1995) Lack of strong induced or maternal effects in tussock moths (Orgyia vetusta) on bush lupine (Lupinus arboreus). Oecologia 103, 343348.CrossRefGoogle ScholarPubMed
Harrison, S. (1997) Persistent, localized outbreaks in the western tussock moth Orgyia vetusta: the roles of resource quality, predation and poor dispersal. Ecological Entomology 22, 158166.CrossRefGoogle Scholar
Harvey, M.S. (1988) Pseudoscorpions from the Krakatau islands and adjacent regions, Indonesia (Chelicerata: Pseudoscorpionida). Memoirs of the Museum of Victoria 49, 309353.CrossRefGoogle Scholar
Heidger, C. & Nentwig, W. (1989) Augmentation of beneficial arthropods by strip management. 3. Artificial introduction of a spider species which preys on wheat pest insects. Entomophaga 34, 511522.CrossRefGoogle Scholar
Helle, W., Sabelis, M.W. (1985) Spider mites. Their biology, natural enemies and control. Volume 1A. The Tetranychidae. Oxford, Elsevier.Google Scholar
Helle, W. & Pijnacker, L.P. (1985) Parthenogenesis, chromosomes and sex. pp. 129139 in Helle, W. Sabelis, M.W. (Eds) Spider mites. Their biology, natural enemies and control. Volume 1A. The Tetranychidae. Oxford, Elsevier.Google Scholar
Henschel, J.R, Schneider, J. & Lubin, Y.D. (1995) Dispersal mechanisms of Stegodyphus (Eresidae): do they balloon. Journal of Arachnology 23, 202204.Google Scholar
Hoelscher, C.E. (1967) Wind dispersal of brown soft scale crawlers Coccus hesperidum (Homoptera: Coccidae) and Texas citrus mites Eutetranychus banksi (Acarina, Tetranychidae) from Texas citrus. Annals of the Entomological Society of America 60, 673678.CrossRefGoogle Scholar
Holiday, N.J. (1977) Population ecology of winter moth (Operophtera brumata) on apple in relation to larval dispersal and time of bud burst. Journal of Applied Ecology 14, 803813.CrossRefGoogle Scholar
Holzapfel, E.P. & Perkins, B.D. (1969) Trapping of air-borne insects on ships in the Pacific, (part 7). Pacific Insects 11, 455476.Google Scholar
Hopper, K.R. (1999) Risk-spreading and bet-hedging in insect population biology. Annual Review of Entomology 44, 535560.CrossRefGoogle ScholarPubMed
Horner, N.V. (1974) Annual aerial dispersal of jumping spiders in Oklahoma (Araneae, Salticidae). Journal of Arachnology 2, 101105.Google Scholar
Howard, L.O. (1895) On the gossamer spiders' web. Proceedings of the Entomological Society of Washington 3, 191192.Google Scholar
Humphrey, J.A.C. (1987) Fluid mechanical constraints on spider ballooning. Oecologia 73, 469477.CrossRefGoogle ScholarPubMed
Hunter, A.F. (1995) The ecology and evolution of reduced wings in forest macrolepidoptera. Evolutionary Ecology 9, 275287.CrossRefGoogle Scholar
Hunter, A.F. & Elkinton, J.S. (2000) Effects of synchrony with host plant on populations of a spring-feeding lepidopteran. Ecology 81, 12481261.CrossRefGoogle Scholar
Hussey, N.W. & Parr, W.J. (1963) Dispersal of the glasshouse red spider mite Tetranychus urticae Koch (Acarina, Tetranychidae). Entomologia Experimentalis et Applicata 6, 207214.CrossRefGoogle Scholar
Jaynes, H.A. & Speers, C.F. (1949) Biological and ecological studies of the spruce budworm. Journal of Economic Entomology 42, 221225.CrossRefGoogle Scholar
Jeppson, L.R., Keifer, H.H. & Baker, E.W. (1975) Mites injurious to economic plants Berkeley University of California Press.CrossRefGoogle Scholar
Johnson, C.G. (1960) A basis for a general system of insect migration by flight. Nature 186, 348350.CrossRefGoogle Scholar
Johnson, M.L. & Gaines, M.L. (1990) Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annual Review of Ecological Systematics 21, 449480.CrossRefGoogle Scholar
Jones, D. (1994) How ballooning spiders become airborne. Newsletter of the British Arachnological Society 69, 56.Google Scholar
Jones, F.M. & Parks, H.B. (1928) The bagworms of Texas. Bulletin of the Texas Departmental Agricultural Experimental Station 382, 136.Google Scholar
Jongejans, E. & Schippers, P. (1999) Modeling seed dispersal by wind in herbaceous species. Oikos 87, 362372.CrossRefGoogle Scholar
Jung, C. & Croft, B.A. (2001a) Ambulatory and aerial dispersal among generalist and specialist predatory mites (Acari: Phytoseiidae). Environmental Entomology 30, 11121118.CrossRefGoogle Scholar
Jung, C. & Croft, B.A. (2001b) Aerial dispersal of phytoseiid mites (Acari: Phytoseiidae): estimating falling speed and dispersal distance of adult females. Oikos 94, 182190.CrossRefGoogle Scholar
Kajak, A. (1959) Remarks on autumn dispersal of spiders. Ekologia Polska Seria B 5, 331336.Google Scholar
Kalshoven, L.G.E. (1965) Notes on some injurious Lepidoptera from Java. Tidschrift voor Entomologie 104, 4350.Google Scholar
Kennedy, J.S. (1985) Migration, behavioural and ecological. pp. 526 in Rankin, M.A. (Eds) Migration: mechanisms and adaptive significance. Contributions to Marine Science 27 (suppliment). Texas, University of Texas Marine Science Institute.Google Scholar
Kennedy, G.G. & Smitley, D.R. (1985) Dispersal. pp. 233242 in Helle, W. Sabelis, M.W. (Eds) Spider mites. Their biology, natural enemies and control. Volume 1A. The Tetranychidae. Oxford, Elsevier.Google Scholar
Kevan, P.G. & Greco, C.F. (2001) Contrasting patch choice behaviour by immature predators, a spider (Misumena vatia) and an insect (Phymata americana). Ecological Entomology 26, 148153.CrossRefGoogle Scholar
Krantz, G.W. & Lindquist, E.E. (1979) Evolution of phytophagous mites (Acari). Annual Reviews of Entomology 24, 121158.CrossRefGoogle Scholar
Kristensen, N.P. & Skalski, A.W. (1999) Phylogeny and palaeontology. pp. 726 In Kristensen, N.P. (Eds) Lepidoptera. Moths and butterflies. Vol. I. Evolution, systematics and biogeography. Handbuch der Zoologie4 Berlin, Walter de Gruyter.Google Scholar
Kuno, E. (1981) Dispersal and the perspective of populations in unstable habitats: a theoretical note. Oecologia 49, 123126.CrossRefGoogle Scholar
Labandeira, C.C. & Sepkoski, J.J. (1993) Insect diversity in the fossil record. Science 261, 310315.CrossRefGoogle ScholarPubMed
Labandeira, C.C., Johnson, K.R. & Wilf, P. (2002) Impact of the terminal Cretaceous event on plant–insect associations. Proceedings of the National Academy of Sciences, USA 99, 20612066.CrossRefGoogle ScholarPubMed
Lance, D. & Barbosa, P. (1981) Host tree influences on the dispersal of first instar gypsy moth, Lymantria dispar (L.). Ecological Entomology 6, 411416.CrossRefGoogle Scholar
Lance, D.R., Elkinton, J.S. & Schwalbe, C.P. (1991) Responses of gypsy-moth larvae (Lepidoptera, Lymantriidae) to foliage of oaks from naturally infested sites on Cape Cod, Massachusetts. Journal of Entomological Science 26, 214222.CrossRefGoogle Scholar
Lawrence, R.F. (1971) Araneida. pp. 301313in van Zinderen Bakker, E.N, Winterbottom, J.M, Dyer, R.A, (Eds) Marrion and Prince Edward Islands. Report on the South African biological and geological expedition (1965–1966). Cape Town, A.A. Balkema.Google Scholar
Lawson, D.S., Nyrop, J.P. & Dennehy, T.J. (1996) Aerial dispersal of European red mites (Acari: Tetranychidae) in commercial apple orchards. Experimental and Applied Acarology 20, 193202.CrossRefGoogle Scholar
Legel, G.J. & van Wingerden, W.K.R.E. (1980) Experiments on the influence of food and crowding on the aeronautic dispersal of Erigone arctica (White, 1852) (Araneae, Linyphiidae). pp. 97102 in Gruber, J. (Ed.) Proceedings of the 8th International Arachnological Congress Vienna, Egerman.Google Scholar
Leonard, D.E. (1967) Silking behaviour of the gypsy moth Porthetria dispar. Canadian Entomologist 99, 11451149.CrossRefGoogle Scholar
Leonard, D.E. (1971) Airborne dispersal of larvae of the gypsy moth and its influence on concepts of control. Journal of Economic Entomology 64, 638641.CrossRefGoogle Scholar
Leroy, A. & Leroy, J. (2000) Spider watch in southern Africa Cape Town Stuik Publishers.Google Scholar
Li, J. & Margolies, D.C. (1993a) Effects of mite age, mite density, and host quality on aerial dispersal behavior in the two-spotted spider mite. Entomologia Experimentalis et Applicata 68, 7986.CrossRefGoogle Scholar
Li, J. & Margolies, D.C. (1993b) Quantitative genetics of aerial dispersal behavior and life history traits in Tetranychus urticae. Heredity 70, 544552.CrossRefGoogle Scholar
Li, J. & Margolies, D.C. (1994a) Barometric pressure influences initiation of aerial dispersal in the twospotted spider mite. Journal of the Kansas Entomological Society 67, 386393.Google Scholar
Li, J. & Margolies, D.C. (1994b) responses to direct and indirect selection on aerial dispersal behaviour in Tetranychus urticae. Heredity 72, 1022.CrossRefGoogle Scholar
Liebhold, A.M. & McManus, M.L. (1991) Does larval dispersal cause the expansion of gypsy moth outbreaks? Northern Journal of Applied Forestry 8, 9598.CrossRefGoogle Scholar
Lindquist, E.E. (1985) Diagnosis and phylogenetic relationships. pp. 6374 in Helle, W. Sabelis, M.W. (Eds) Spider mites. Their biology, natural enemies and control. Volume 1A. The Tetranychidae. Oxford, Elsevier.Google Scholar
Lindroth, C.H., Andersson, H., Bödvarsson, H. & Richter, S.H. (1973) Surtsey, Iceland. The development of a new fauna, 1963–1970. Terrestrial invertebrates. Entomologica Scandinavica supplement 5, 7280.Google Scholar
Lister, M. (1684) On the projection of the threads of spiders; and on bees breeding in cases made of leaves, as also, a viviparous fly Philosophical Transactions of the Royal Society of London 14, 592596.CrossRefGoogle Scholar
Litsinger, J.A., Hasse, V., Barrion, A.T. & Schmutterer, H. (1991) Response of Ostrinia furnacalis (Guenee) (Lepidoptera, Pyralidae) to intercropping. Environmental Entomology 20, 9881004.CrossRefGoogle Scholar
MacCook, H.C. (1877) The aeronautic flight of spiders. Proceedings of the Academy of Sciences of Philadelphia 1877, 308312.Google Scholar
MacCook, H.C. (1878a) Note on the probable geographical distribution of a spider by the trade winds. Proceedings of the Academy of Sciences of Philadelphia 1878, 136147.Google Scholar
MacCook, H.C. (1878b) Supplementary note of the aeronautic flight of spiders. Proceedings of the Academy of Sciences of Philadelphia 1878, 337339.Google Scholar
Main, B.Y. (1957) Occurrence of the trap-door spider Conothele malayana (Doleschall) in Australia (Mygalomorpha: Ctenizidae). Western Australian Naturalist 5, 209216.Google Scholar
Main, B.Y. (1976) Spiders. Sydney, Collins.Google Scholar
Main, B.Y. (1981) Australian spiders: diversity, distribution and ecology. pp. 808852 in Keast, A. (Ed.) Ecological biogeography of Australia. The Hague, Junk.Google Scholar
Main, B.Y. (1982) Some zoogeographic considerations of families of spiders occurring in New Guinea. Monographs in Biology 42, 583602.Google Scholar
Margolies, D.C. (1987) Conditions eliciting aerial dispersal behavior in Banks grass mite, Oligonychus pratensis (Banks) (Acari: Tetranychidae). Environmental Entomology 16, 928932.CrossRefGoogle Scholar
Margolies, D.C. (1993) Genetic variation for aerial dispersal behavior in the Banks grass mite. Experimental and Applied Acarology 17, 461471.CrossRefGoogle Scholar
Margolies, D.C. (1995) Evidence of selection on spider mite dispersal rates in relation to habitat persistence in agroecosystems. Entomologia Experimentalis et Applicata 76, 105108.CrossRefGoogle Scholar
Margolies, D.C. & Kennedy, G.G. (1985) Movement of the two spotted spider mite, Tetranychus urticae, among hosts in a corn-peanut agroecosystem. Entomologia Experimentalis et Applicata 37, 5561.CrossRefGoogle Scholar
Margolies, D.C. & Kennedy, G.G. (1988) Fenvalerate-induced aerial dispersal behavior of the two-spotted spider mite, Tetranychus urticae Koch. Entomologia Experimentalis et Applicata 46, 233240.CrossRefGoogle Scholar
Mariath, H.A. (1984) Factors affecting the dispersal behaviour of larvae of an Australian geometrid moth. Entomologia Experimentalis et Applicata 35, 159167.CrossRefGoogle Scholar
Marlé, G. (1951) Observations on the dispersal of the fruit tree red spider mite Metatetranychus ulmi (Koch). Annual Report of the East Malling Research Station 1950, 155159..Google Scholar
Mason, C.J. & McManus, M.L. (1981) Larval dispersal of the gypsy moth The gypsy moth. pp. 161202 in Doane, C.C. McManus, M.L. (Eds) The gypsy moth: research toward integrated pest management. Technical Bulletin 1584 Washington DC, United States Department of Agriculture.Google Scholar
Maynard-Smith, J. (1976) Evolution and the theory of games. American Scientist 64, 4145.Google Scholar
McCartney, H.A. & Fitt, B.D.L. (1985) Construction of dispersal models. pp. 107143 in Gilligan, C.A. (Ed.) Mathematical modelling of crop disease. London, Academic Press.Google Scholar
McDonald, G. (1991) Oviposition and larval dispersal of the common army worm, Mythimna convecta (Walker) Lepidoptera: Noctuidae). Australian Journal of Ecology 16, 385394.CrossRefGoogle Scholar
McDonogh, R.S. (1939) The habitat, distribution and dispersal of the psychid moth, Luffia ferchaultella, in England and Wales. Journal of Animal Ecology 8, 1028.CrossRefGoogle Scholar
McEnroe, W.D. (1969) Spreading and inbreeding in the spider mite. Journal of Heredity 60, 343345.CrossRefGoogle ScholarPubMed
McManus, M.L. (1973) The role of behaviour in the dispersal of newly hatched gypsy moth larvae. US Department of Agriculture Forest Service Research Report 267, 110.Google Scholar
McManus, M.L. & Mason, C.J. (1983) Determination of the settling velocity and its significance to larval dispersal of the gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology 12, 270272.CrossRefGoogle Scholar
Meijer, J. (1977) The immigration of spiders (Araneida) into a new polder. Ecological Entomology 2, 8190.CrossRefGoogle Scholar
Metz, J.A.J., de Jong, T.J. & Klinkhamer, P.G.L. (1983) What are the advantages of dispersing; a paper by Kuno explained and extended. Oecologia 57, 166169.CrossRefGoogle ScholarPubMed
Miller, G.L. (1984) Ballooning in Geolycosa turricola (Treat) and Geolycosa patellonigra Wallace: high dispersal frequencies in stable habitats. Canadian Journal of Zoology 62, 21102111.CrossRefGoogle Scholar
Miller, R.W., Croft, B.A. & Nelson, R.D. (1985) Effects of early season immigration on cyhexatin and formetanate resistance of Tetranychus urticae (Acari: Tetranychidae) on strawberry in central California. Journal of Economic Entomology 78, 13791386.CrossRefGoogle Scholar
Milzer, A. (1935) Ballooning of an adult black-widow spider. Science 82, 570.CrossRefGoogle Scholar
Mitchell, R. (1970) An analysis of dispersal in mites. American Naturalist 104, 425.CrossRefGoogle Scholar
Mitchell, R.G. (1979) Dispersal of early instars of the Douglas-fir tussock moth. Annals of the Entomological Society of America 72, 291297.CrossRefGoogle Scholar
Miyashita, K. (1969) Effects of locomotory activity, temperature and hunger on the respiratory rate of Lycosa T-insignata Boes. et Str. (Araneae: Lycosidae). Applied Entomology and Zoology 4, 105113.CrossRefGoogle Scholar
Morris, R.F. & Mott, D.G. (1963) Dispersal and the spruce budworm. Memoirs of the Entomological Society of Canada 31, 180189.CrossRefGoogle Scholar
Morse, D.H. (1992) Dispersal of the spiderlings of Xysticus emertoni (Araneae, Thomisidae), a litter-dwelling crab spider. Journal of Arachnology 20, 217221.Google Scholar
Morse, D.H. (1993) Some determinants of dispersal by crab spiderlings. Ecology 74, 427432.CrossRefGoogle Scholar
Mott, D.G. (1963) The analysis of the survival of small larvae in the unsprayed area. Memoirs of the Entomological Society of Canada 31, 4252.CrossRefGoogle Scholar
Murray, J. (1829) On the aerial spider. Magazine of Natural History 1, 320324.Google Scholar
Nakamura, K. (1987) Hunger and starvation. pp. 287295 in Nentwig, W. (Ed.) Ecophysiology of spiders. Berlin, Springer-Verlag.CrossRefGoogle Scholar
New, T.R. (1968a) Dispersal of larvae of some British Neuroptera. Entomological Gazette 19, 230232.Google Scholar
New, T.R. (1968b) The dispersal of insects across sandy beaches with special reference to larvae of Neuroptera. Entomological Gazette 19, 119125.Google Scholar
Nielsen, E. (1931) The biology of spiders with special reference to the Danish Fauna. Volume I Copenhagen Levin & Munksgaard.Google Scholar
Nielsen, E. (1937) Another report on a migration of multitudes of spiders. Entomologishe Meddelelser 20, 2224.Google Scholar
Nishiki, S. (1966) On the aerial migration of spiders – a report on “gossamer” (so-called “Yukimukae”) in Japan. Acta Arachnologica 20, 2434.CrossRefGoogle Scholar
Nyffeler, M. & Sunderland, K.D. (2003) Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agriculture, Ecosystems and Environment 95, 579612.CrossRefGoogle Scholar
Oke, T.R. (1987) Boundary layer climates. London, Methuen.Google Scholar
Okuma, C. & Kisimoto, R. (1981) Air borne spiders collected over the East China Sea. Japanese Journal of Applied Entomology and Zoology 25, 296298.CrossRefGoogle Scholar
Osborne, J.L., Clark, S.J., Morris, R.J., Williams, I.H., Riley, J.R., Smith, A.D., Reynolds, D.R. & Edwards, A.S. (1999) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. Journal of Applied Ecology 36, 519533.CrossRefGoogle Scholar
Owen, D.F. & Le Gros, A.E. (1954) Spiders caught by swifts. Entomologist's Gazette 5, 117120.Google Scholar
Parker, J.R. (1978) The black widows fly in. Newsletter of the British Arachnological Society 23, 11.Google Scholar
Parker, J.R. (1989) ‘Ballooning’ by spiders: an incorrect description. Newsletter of the British Arachnological Society 54, 5.Google Scholar
Parker, J.R. (1996) Notes and comments: aerial dispersal. Newsletter of the British Arachnological Society 75, 8.Google Scholar
Parker, G.A. & Stuart, R.A. (1976) Animal behaviour as a strategy optimizer: evolution of resource assessment strategies and optimal emigration thresholds. American Naturalist 110, 10551076.CrossRefGoogle Scholar
Parker, J., Harley, B. & Davies, M. (1991) Martin Lister's English spiders 1678. Colchester, Harley Books.Google Scholar
Pavlov, L.F. (1961) Ecology of the stem moth Ochsenheimeria vaculella. Entomological Review 40, 461466.Google Scholar
Penney, D. (2004) Does the fossil record of spiders track that of their principal prey, the insects? Transactions of the Royal Society of Edinburgh: Earth Sciences (in press).Google Scholar
Penney, D., Wheater, C.P. & Selden, P.A. (2003) Resistance of spiders to Cretaceous-Tertiary extinction events. Evolution 57, 25992607.Google ScholarPubMed
Plagens, M.J. (1986) Aerial dispersal of spiders (Araneae) in a Florida cornfield ecosystem. Environmental Entomology 15, 12251233.CrossRefGoogle Scholar
Platnick, N.I. (1976a) Concepts of dispersal in historical biogeography. Systematic Zoology 25, 294295.CrossRefGoogle Scholar
Platnick, N.I. (1976b) Drifting spiders or continents?: vicariance biogeography of the spider subfamily Laroniiinae (Araneae: Gnaphosidae). Systematic Zoology 25, 101109.CrossRefGoogle Scholar
Platnick, N.I. (2004) The world spider catalog, version 5.0. http:///research.amnh.org/entomology/spiders/catalog.Google Scholar
Porter, J. (1997) Colour identification guide to the caterpillars of the British Isles (Macrolepidoptera). London, Viking.Google Scholar
Powell, J.A., Mitter, C. & Farrell, B.D. (1999) Evolution of larval food preferences in Lepidoptera. pp. 403422 in Kristensen, N.P. (Ed.) Lepidoptera. Moths and butterflies. Vol. I. Evolution, systematics and biogeography Handbuch der Zoologie, Volume 4, Berlin, Walter de Gruyter.Google Scholar
Preston-Mafham, K. & Preston-Mafham, R. (1996) The natural history of spiders Ramsbury Crowood Press.Google Scholar
Rahman, K.A. & Sapra, A.N. (1940) Biology of the mite Paratetranychus indicus Hirst, a pest of sugar cane in the Punjab. Indian Journal of Entomology of New Delhi 2, 201212.Google Scholar
Ramachandran, R. (1987a) Influence of host-plants on the wind dispersal and the survival of an Australian geometrid caterpillar. Entomologia Experimentalis et Applicata 44, 289294.CrossRefGoogle Scholar
Ramachandran, R. (1987b) Terminal velocity of the first instar Ectropis excursia (Guenee) (Lepidoptera: Geometridae). Proceedings of the Indian Academy of Sciences (Animal Science) 96, 673678.CrossRefGoogle Scholar
Ramirez, M.G. & Haakonsen, K.E. (1999) Gene flow among habitat patches on a fragmented landscape in the spider Argiope trifasciata (Araneae: Araneidae). Heredity 83, 580585.CrossRefGoogle ScholarPubMed
Reavy, D. (1993) Why body size matters to caterpillars. pp. 248279 in Stamp, N.E. Casey, T.M. Caterpillars. Ecological and evolutionary constraints of foraging. London, Chapman & Hall.Google Scholar
Rhainds, M., Gries, G. & Chew, P.S. (1997) Adaptive significance of density-dependent ballooning by bagworm larvae, Metisa plana (Walker) (Lepidoptera: Psychidae). Canadian Entomologist 129, 927931.CrossRefGoogle Scholar
Rhainds, M., Gries, G. & Ho, C.T. & Chew, P.S. (2002) Dispersal by bagworm larvae, Metisa plana: effects of population density, larval sex, and host plant attributes. Ecological Entomology 27, 204212.CrossRefGoogle Scholar
Richter, C.J.J. (1967) Aeronautic behaviour in the genus Pardosa (Araneae, Lycosidae). Entomologist's Monthly Magazine 103, 7274.Google Scholar
Richter, C.J.J. (1970a) Aerial dispersal in relation to habitat in eight wolf spiders species (Pardosa, Araneae, Lycosidae). Oecologia 5, 200214.CrossRefGoogle ScholarPubMed
Richter, C.J.J. (1970b) Relation between habitat structure and development of the glandulae ampullaceae in eight wolf spider species (Pardosa, Araneae, Lycosidae). Oecologia 5, 185199.CrossRefGoogle ScholarPubMed
Richter, C.J.J. (1971) Some aspects of aerial dispersal in different populations of wolf spiders, with particular reference to Pardosa amentata (Araneae, Lycosidae). Miscellaneous Papers Landbouwhogesch. Hogeschool, Wageningen, Netherlands 8, 77–88.Google Scholar
Riechert, S.E. & Harp, J.M. (1987) Nutritional ecology of spiders Nutritional ecology of insects, mites, spiders and related invertebrates 645672 Slansky F. Rodriguez J.G. New York Wiley & Sons.Google Scholar
Roff, D.A. (1990) The evolution of flightlessness in insects. Ecological Monographs 60, 389421.CrossRefGoogle Scholar
Ross, S.E. & Ostlie, K.R. (1990) Dispersal and survival of early instars of European corn borer (Lepidoptera: Pyralidae) in field corn. Journal of Economic Entomology 83, 831836.CrossRefGoogle Scholar
Sabelis, M.W. & Dicke, M. (1985) Long-range dispersal and searching behaviour. pp. 141161 in Helle, W. Sabelis, M.W. Spider mites. Their biology, natural enemies and control. Volume 1B. Natural enemies of the Tetranychidae: the Phytoseiidae Oxford, Elsevier.Google Scholar
Sabelis, M.W. & Afman, B.P. (1994) Synonome-induced suppression of take-off in the phytoseiid mite Phytoseiulus persimilis Athias-Henriot. Experimental and Applied Acarology 18, 711721.CrossRefGoogle Scholar
Sabelis, M.M.W. & Bruin, J. (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. pp. 329366 in Lindquist, E.E. Sabelis, M.W. Bruin, J. (Eds) Eriophyid mites: their biology, natural enemies and control. Amsterdam, Elsevier.CrossRefGoogle Scholar
Salmon, J.T. & Horner, N.V. (1977) Aerial dispersion of spiders in north central Texas. Journal of Arachnology 5, 153157.Google Scholar
Samu, F., Sunderland, K.D., Topping, C.J. & Fenlon, J.S. (1996) A spider population in flux: selection and abandonment of artificial web-sites and the importance of intraspecific interactions in Lepthyphantes tenuis (Araneae: Linyphiidae) in wheat. Oecologia 106, 228239.CrossRefGoogle ScholarPubMed
Schneider, J.M., Roos, J., Lubin, Y. & Henschel, J.R. (2001) Dispersal of Stegodyphus dumicola (Araneae, Eresidae): they do balloon after all. Journal of Arachnology 29, 114116.CrossRefGoogle Scholar
Schütt, K. (2002) The limits and phylogeny of the Araneoidea (Arachnida, Araneae). PhD thesis, Humboldt-Universität zu Berlin, Germany..Google Scholar
Selden, P.A. (1993) Arthropoda (Aglaspidida, Pycnogonida and Chelicerata). pp. 297320 in Benton, M.J. (Ed.) The fossil record 2. New York, Chapman & Hall.Google Scholar
Sevastopulo, D.G. (1976) A note on moths with flightless females (Lepidoptera). Entomologist's Gazette 27, 139.Google Scholar
Sigurdsson, J.B., Titman, C.W. & Davies, P.A. (1976) The dispersal of young post-larval bivalve molluscs by byssus threads. Nature 262, 386387.CrossRefGoogle Scholar
Smith, C.J. (1962) Some observations on wind-borne linyphiids. Flatford Mill Spider Group Bulletin 13, 1.Google Scholar
Smitley, D.R & Kennedy, G.G. (1985) Photo-orientated aerial-dispersal behavior of Tetranychus urticae (Acari: Tetranychidae) enhances escape from the leaf surface. Annals of the Entomological Society of America 78, 609614.CrossRefGoogle Scholar
Smitley, D.R & Kennedy, G.G. (1988) Aerial dispersal of the two spotted spider mite (Tetranychus urticae) from field corn. Experimental and Applied Acarology 5, 3346.CrossRefGoogle Scholar
Southwood, T.R.E. (1962) Migration of terrestrial arthropods in relation to habitat. Biological Review 37, 171214.CrossRefGoogle Scholar
Stabler, H.P. (1913) Red spiders spread by the wind. Monthly Bulletin of the Californian State Horticultural Committee II, 12.Google Scholar
Stephens, C.S. (1962) Oiketicus kirbyi (Lepidoptera: Psychidae) a pest of bananas in Costa Rica. Journal of Economic Entomology 55, 381386.CrossRefGoogle Scholar
Stoner, D. (1937) A method of dispersal of the black widow spider. Science 85, 219.CrossRefGoogle ScholarPubMed
Stuart, R.J. & Polavarapu, S. (1998) Oviposition preferences of the polyphagous moth Choristoneura parallela (Lepidoptera: Tortricidae): effects of plant species, leaf size, and experimental design. Environmental Entomology 27, 102109.CrossRefGoogle Scholar
Suckling, D.M., Hackett, J.K., Barrington, A.M. & Daly, J.M. (2002) Sterilisation of painted apple moth Teia anartoides (Lepidoptera: Lymantriidae) by irradiation. New Zealand Plant Protection 55, 711.CrossRefGoogle Scholar
Sunderland, K.D. (1996) Studies on the population ecology of the spider Lepthyphantes tenuis (Araneae: Linyphiidae) in cereals. Bulletin SROP/wprs 19, 5369.Google Scholar
Sunderland, K.D. & Dalingwater, J.E. (1986) The 1985 spider ballooning survey. Newsletter to the British Arachnological Society 46, 5.Google Scholar
Sunderland, K. & Topping, C. (1991) Observations on the ballooning attempts of linyhiid spiders. Newsletter of the British Arachnological Society 61, 5.Google Scholar
Suter, R.B. (1991) Ballooning in spiders: results of wind tunnel experiments. Ethology, Ecology and Evolution 3, 1325.CrossRefGoogle Scholar
Suter, R.B. (1992) Ballooning: data from spiders in freefall indicate the importance of posture. Journal of Arachnology 20, 107113.Google Scholar
Suter, R.B. (1999) An aerial lottery: the physics of ballooning in a chaotic atmosphere. Journal of Arachnology 27, 281293.Google Scholar
Tang, Z.T., Qin, D.R. & Wang, Y.J. (1980) A study of the red coffee borer (Lepidoptera: Cossidae). Scientia Silvae Sinicae 16, 208213.Google Scholar
Tashiro, H. (1966) Intratree dispersal of the red citrus mite Panonychus citri (Acarina, Tetranychidae). Annals of the Entomological Society of America 59, 12061210.CrossRefGoogle Scholar
Taylor, L.R. (1960) Mortality and viability of insect migrants high in the air. Nature 186, 410411.CrossRefGoogle Scholar
Taylor, L.R. (1983) Insect migration as a paradigm for survival by movement. pp. 181–21 in Swingland, I.R. Greenwood, J. (Eds) The ecology of animal movement. Oxford, Oxford University Press.Google Scholar
Taylor, R.A.J., Reling, D. (1986) Density/height prolfile and long range dispersal of first instar gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology 15, 431435.CrossRefGoogle Scholar
Thomas, C.F.G. (1996) Modelling aerial dispersal of linyphiid spiders. Aspects of Applied Biology 46, 217222.Google Scholar
Thomas, C.F.G. & Jepson, P.C. (1999) Differential aerial dispersal of linyphiid spiders from a grass and cereal field. Journal of Arachnology 27, 294300.Google Scholar
Thomas, C.F.G., Hol, E.H.A. & Everts, J.W. (1990) Modelling the diffusion component of dispersal during recovery of a population of linyphiid spiders from exposure to an insecticide. Functional Ecology 4, 357368.CrossRefGoogle Scholar
Thomas, C.F.G., Brain, P. & Jepson, P.C. (2003) Aerial activity of linyphiid spiders: modelling dispersal distances from meteorology and behaviour. Journal of Applied Ecology 40, 912927.CrossRefGoogle Scholar
Thorbek, P., Topping, C.J. & Sunderland, K.D. (2002) Validation of a simple method for monitoring aerial activity of spiders. Journal of Arachnology 30, 5764.CrossRefGoogle Scholar
Thorton, I.W.B. & New, T.R. (1988) Krakatau invertebrates: the 1980s fauna in the context of a century of recolonization. Philosophical Transactions of the Royal Society 322, 493522.Google Scholar
Tikkanen, O.-P., Carr, T.G. & Roininen, H. (1999) Factors influencing the distribution of a generalist spring feeding moth Operopthera brumata (Lepidoptera: Geometridae), on host plants. Environmental Entomology 28, 461469.CrossRefGoogle Scholar
Toft, S. (1995) Two functions of gossamer dispersal in spiders. Acta Jutlandica 70, 257268.Google Scholar
Tolbert, W.W. (1977) Aerial dispersal behavior of two orb-weaving spiders. Pysche 84, 1327.Google Scholar
Topping, C.J. (1999) An individual-based model for dispersive spiders in agroecosystems: simulations of the effects of landscape structure. Journal of Arachnology 27, 378386.Google Scholar
Topping, C.J. & Sunderland, K.D. (1995) Methods for monitoring aerial dispersal by spiders. Acta Jutlandica 70, 245256.Google Scholar
Topping, C.J. & Sunderland, K.D. (1998) Population dynamics and dispersal of Lepthyphantes tenuis in an ephemeral habitat. Entomologia Experimentalis et Applicata 87, 2941.CrossRefGoogle Scholar
Tsagkarakou, A., Navajas, M., Lagnel, J. & Pasteur, N. (1997) Population structure in the spider mite Tetranychus urticae (Acari: Tetranychidae) from Crete based on multiple allozymes. Heredity 78, 8492.CrossRefGoogle ScholarPubMed
Valerio, C.E. (1975) A unique case of mutualism. American Naturalist 109, 235238.CrossRefGoogle Scholar
van Wingerden, W.K.R.E. (1975) Population dynamics of Erigone arctica (White) (Araneae Linyphiidae). pp. 7177 in Proceedings of the 6th International Congress of Arachnology, Wien.Google Scholar
van Wingerden, W.K.R.E. (1977) Population dynamics of Erigone arctica (White) (Araneae Linyphiidae) II. Symposium of the Zoological Society of London 42, 195202.Google Scholar
van Wingerden, W.K.R.E. (1980) Aeronautic dispersal of immatures of two linyphiid spider species (Aranaea, Linyphiidae). pp. 9196 in Gruber, J. (Ed.) Proceedings of the 8th International Arachnology Congress Vienna.Google Scholar
van Wingerden, W.K.R.E. & Vugts, H.F. (1974) Factors influencing aeronautic behaviour of spiders. Bulletin of the British Arachnological Society 3, 610.Google Scholar
van Wingerden, W.K.R.E. & Vugts, H.F. (1979) Ecological and meteorological aspects of aeronautic behaviour of spiders. pp. 212219 in Bruce, R.G.H. Howard, D.C. (Eds) Proceedings of the 1st International Conference in Aerobiology, Berichte Umweltbundesambt 5 Germany.Google Scholar
Vollrath, F. (1982) Colony formation in a social spider. Zeitschrift für Tierpyschologie 60, 313324.CrossRefGoogle Scholar
Vollrath, F. & Knight, D.P. (2001) Liquid crystalline spinning of spider silk. Nature 410, 541548.CrossRefGoogle ScholarPubMed
Vugts, H.F., van Wingerden, W.K.R.E. (1976) Meteorological aspects of aeronautic behaviour in spiders. Oikos 27, 433444.CrossRefGoogle Scholar
Walklate, P.J. (1986) A Markov-chain particle dispersion model based on airflow data: extension to large water droplets. Boundary-Layer Meteorology 37, 312318.CrossRefGoogle Scholar
Walklate, P.J. (1987) A random-walk model for dispersion of heavy particles in turbulent air flow. Boundary-Layer Meteorology 39, 175190.CrossRefGoogle Scholar
Wallace, B., Wallace, I. (1990) An observation on Oedothorax apicatus (Blackwall). Newsletter to the British Arachnological Society 59, 2.Google Scholar
Walter, D.E. (2001) Endemism and cryptogenesis in segmented mites: a review of the Australian Alicorhagiidae, Terpnacaridae, Oehserchestidae and Grandjeanicidae (Acari: Sarcoptiformes). Australian Journal of Entomology 40, 207218.CrossRefGoogle Scholar
Walter, D.E. & Proctor, H.C. (1999) Mites. Ecology, evolution and behaviour. Wallingford, Oxon CAB International.CrossRefGoogle Scholar
Wallis, R.C. (1959) Factors affecting larval migration of the gypsy moth. Entomological News 70, 235240.Google Scholar
Wanibuchi, K., Saito, Y. (1983) The process of population increase and patterns of resource utilization of two spotted spider mites, Oligonychus ununguis (Jacobi) and Panonychus citri (McGregor), under experimental conditions (Acari: Tetranychidae). Research in Population Ecology 25, 116129.CrossRefGoogle Scholar
Ward, L.K., Hackshaw, A., Clarke, R. (2003) Do food-plant preferences of modern families of phytophagous insects and mites reflect past evolution with plants. Biological Journal of the Linnean Society 78, 5183.CrossRefGoogle Scholar
Washburn, J.O., Washburn, L. (1984) Active aerial dispersal of minute wingless arthropods: exploitation of boundary-layer velocity gradients. Science 223, 10881089.CrossRefGoogle ScholarPubMed
Wellington, W.G. & Henson, W.R. (1947) Notes on the effects of physical factors on the spruce budworm, Choristoneura fumiferana (Clem.). Canadian Entomologist 79, 168170 (+note on 195).CrossRefGoogle Scholar
Weseloh, R.M. (1997) Evidence for limited dispersal of larval gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). Canadian Entomologist 129, 335361.CrossRefGoogle Scholar
Weygoldt, P. (1969) The biology of pseudoscorpions. Cambridge, Harvard University Press.Google Scholar
Weyman, G.S. (1993) A review of the possible causative factors and significance of ballooning in spiders. Ethology, Ecology and Evolution 5, 279291.CrossRefGoogle Scholar
Weyman, G.S. (1995) Laboratory studies of the factors stimulating ballooning behaviour by linyphiid spiders (Araneae, Linyphiidae). Journal of Arachnology 23, 7584.Google Scholar
Weyman, G.S. & Jepson, P.C. (1994) The effect of food supply on the colonisation of barley by aerially dispersing spiders (Araneae). Oecologia 100, 386390.CrossRefGoogle ScholarPubMed
Weyman, G.S., Sunderland, K.D. & Fenlon, J.S. (1994) The effect of food deprivation on aeronautic dispersal behaviour (ballooning) in Erigone spp. spiders. Entomologia Experimentalis et Applicata 73, 121126.CrossRefGoogle Scholar
Weyman, G.S., Jepson, P.C. & Sunderland, K.D. (1995) Do seasonal changes in numbers of aerially dispersing spiders reflect population density on the ground or variation in ballooning motivation. Oecologia 101, 487493.CrossRefGoogle ScholarPubMed
Weyman, G.S., Sunderland, K.D. & Jepson, P.C. (2002) A review of the evolution and mechanisms of ballooning by spiders inhabiting arable farmland. Ethology, Ecology and Evolution 14, 307326.CrossRefGoogle Scholar
Wickerman, B.E. & Beckwith, R.C. (1978) Life history and habits. pp. 3037 in Brooks, M.H. Stark, R.W. Campbell, R.W. (Eds) The Douglas-fir tussock moth: a synthesis. Technical Bulletin of the United States Department of Agriculture 1584. Washington DC, United States Department of Agriculture.Google Scholar
Wickler, W., Seibt, U. (1986) Aerial dispersal by ballooning in adult Stegodyphus mimosarum. Naturwissenschaften 73, 628629.CrossRefGoogle Scholar
Williams, C.B., Cockbill, G.F., Gibbs, M.E. & Downes, J.A. (1942) Studies on the migration of Lepidoptera. Transactions of the Royal Entomological Society of London 92, 101283.CrossRefGoogle Scholar
Wilson, R.S. (1969) Control of dragline spinning in certain spiders. American Zoologist 9, 103111.CrossRefGoogle Scholar
Wise, D.H. (1993) Spiders in ecological webs. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Wright, J. (1995) Ballooning? by Tetragnatha extensa (L.). Newsletter to the British Arachnological Society 74, 13.Google Scholar
Yano, S., Kanaya, M., Takafuji, A. (2003) A method for manipulating dispersal cost in microcosms. Entomologia Experimentalis et Applicata 106, 6770.CrossRefGoogle Scholar
Yeargan, K.V. (1975) Factors influencing the aerial dispersal of spiders (Arachnida, Araneida). Journal of the Kansas Entomological Society 48, 403408.Google Scholar
Yoshimoto, C.M. & Gressitt, J.C. (1960) Trapping of air borne insects on ships in the Pacific (part 3). Pacific Insects 2, 239243.Google Scholar
Yoshimoto, C.M. & Gressitt, J.C. (1961) Trapping of air borne insects on ships in the Pacific (part 4). Pacific Insects 3, 556558.Google Scholar
Yoshimoto, C.M. & Gressitt, J.C. (1963) Trapping of air borne insects in the Pacific-Antarctic Area. 2. Pacific Insects 5, 873883.Google Scholar
Yoshimoto, C.M., Gressitt, J.C. & Mitchell, C.J. (1962a) Trapping of air borne insects in the Pacific-Antarctic Area. 1. Pacific Insects 4, 847858.Google Scholar
Yoshimoto, C.M., Gressitt, J.C. & Wolff, T. (1962b) Airborne insects Galathea expedition. Pacific Insects 4, 269291.Google Scholar
Young, O.P. & Lockley, T.C. (1988) Dragonfly predation upon Phidippus audax (Araneae, Salticidae). Journal of Arachnology 16, 121122.Google Scholar
Zalucki, M., Clarke, A.R. & Malcolm, S.B. (2002) Ecology and behaviour of first-instar larval Lepidoptera. Annual Review of Entomology 47, 361393.CrossRefGoogle ScholarPubMed
Zein-Eldin, E.A. (1956) Studies on the legume mite, Petrobia apicalis. Journal of Economic Entomology 49, 291296.CrossRefGoogle Scholar
Zlotina, M.A., Mastro, V.C., Elkinton, J.S. & Leonard, D.E. (1999) Dispersal tendencies of neonate larvae of Lymantria mathura and the Asian form of Lymantria dispar (Lepidoptera: Lymantriidae). Environmental Entomology 28, 240245.CrossRefGoogle Scholar