Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T21:48:02.216Z Has data issue: false hasContentIssue false

Bacterial communities associated with invasive populations of Bactrocera dorsalis (Diptera: Tephritidae) in China

Published online by Cambridge University Press:  31 May 2016

L.J. Liu
Affiliation:
Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
I. Martinez-Sañudo
Affiliation:
Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova – Agripolis, Viale dell'Università, Legnaro, Padova, Italy
L. Mazzon
Affiliation:
Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova – Agripolis, Viale dell'Università, Legnaro, Padova, Italy
C.S. Prabhakar
Affiliation:
Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China Department of Entomology, Bihar Agricultural University, Sabour-813210, Bhagalpur, Bihar, India
V. Girolami
Affiliation:
Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova – Agripolis, Viale dell'Università, Legnaro, Padova, Italy
Y.L. Deng
Affiliation:
Xishuangbanna Entry-Exit Inspection and Quarantine Bureau, Xishuangbanna, Yunnan, China
Y. Dai
Affiliation:
Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
Z.H. Li*
Affiliation:
Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
*
*Author for correspondence Tel: 86 -10-62733000 Fax: 86-10-62733404 E-mail: [email protected]

Abstract

The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive insect pest of a wide range of fruits and vegetables. This pest is an invasive species and is currently distributed in some provinces of China. To recover the symbiotic bacteria of B. dorsalis from different invasion regions in China, we researched the bacterial diversity of this fruit fly among one laboratory colony (Guangdong, China) and 15 wild populations (14 sites in China and one site in Thailand) using DNA-based approaches. The construction of 16S rRNA gene libraries allowed the identification of 24 operational taxonomic units of associated bacteria at the 3% distance level, and these were affiliated with 3 phyla, 5 families, and 13 genera. The higher bacterial diversity was recovered in wild populations compared with the laboratory colony and in samples from early term invasion regions compared with samples from late term invasion regions. Moreover, Klebsiella pneumoniae and Providencia sp. were two of the most frequently recovered bacteria, present in flies collected from three different regions in China where B. dorsalis is invasive. This study for the first time provides a systemic investigation of the symbiotic bacteria of B. dorsalis from different invasion regions in China.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aketarawong, N., Bonizzoni, M., Thanaphum, S., Gomulski, L.M., Gasperi, G. & Malacrida, A.R. (2007) Inferences on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Hendel). Molecular Ecology 16, 35223532.CrossRefGoogle ScholarPubMed
Andongma, A.A., Wan, L., Dong, Y.C., Li, P., Desneux, N., White, J.A. & Niu, C.Y. (2015) Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis . Scientific Reports 5, 9470.CrossRefGoogle ScholarPubMed
Ashelford, K.E., Chuzhanova, N.A., Fry, J.C., Jones, A.J., & Weightman, A.J. (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Applied Environmental Microbiology 72, 57345741.Google Scholar
Augustinos, A.A., Drosopoulou, E., Gariou-Papalexiou, A., Asimakis, E.D., Cáceres, C., Tsiamis, G., Bourtzis, K., Mavragani-Tsipidou, P. & Zacharopoulou, A. (2015) Cytogenetic and symbiont analysis of five members of the B. dorsalis complex (Diptera, Tephritidae): no evidence of chromosomal or symbiont-based speciation events. Zookeys 540, 273298.Google Scholar
Bohannan, B.J.M. & Hughes, J.B. (2003) New approaches to analyzing microbial biodiversity data. Current Opinion Microbiology 6, 282287.Google Scholar
Bai, Q. & Song, F.M. (1997) Report about the damage on mango and the prevention and control research of Bactrocera dorsalis . Tropical Agriculture Science (in Chinese) 4, 4548.Google Scholar
Behar, A., Yuval, B. & Jurkevitch, E. (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata . Molecular Ecology 14, 26372643.CrossRefGoogle ScholarPubMed
Behar, A., Jurkevitch, E. & Yuval, B. (2008 a) Bringing back the fruit into fruit fly-bacteria interactions. Molecular Ecology 17, 13751386.Google Scholar
Behar, A., Yuval, B. & Jurkevitch, E. (2008 b) Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. Journal of Insect Physiology 54, 13771383.Google Scholar
Behar, A., Yuval, B. & Jurkevitch, E. (2008 c) Community structure of the Mediterranean fruit fly microbiota: seasonal and spatial sources of variation. Israel Journal of Ecology and Evolution 54, 181191.CrossRefGoogle Scholar
Ben-Yosef, M., Jurkevitch, E. & Yuval, B. (2008) Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratitis capitata . Physiological Entomology 33, 145154.Google Scholar
Bextine, B., Lampe, D., Lauzon, C., Jackson, B. & Miller, T.A. (2005) Establishment of a genetically marked insect-derived symbiont in multiple host plants. Current Microbiology 50, 17.Google Scholar
Capuzzo, C., Firrao, G., Mazzon, L., Squartini, A. & Girolami, V. (2005) Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). International Journal of Systematic Evolutionary Microbiology 55, 16411647.Google Scholar
Chao, A. (1984) Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265270.Google Scholar
Clarke, A.R., Armstrong, K.F., Carmichael, A.E., Milne, J.R., Raghu, S., Roderick, G.K. & Yeates, D.K. (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annual Review of Entomology 50, 293319.Google Scholar
Feldhaar, H. (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology 36, 533543.Google Scholar
Felsenstein, J. (1989) PHYLIP-Phylogeny Inference Package (version 3.2). Cladistics 5, 164166.Google Scholar
Himler, A.G., Adachi-Hagimori, T., Bergen, J.E., Kozuch, A., Kelly, S.E. & Tabashnik, B.E. (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332, 254256.Google Scholar
Jang, E.B. & Nishijima, K.A. (1990) Identification and attractancy of bacteria associated with Dacus dorsalis (Diptera, Tephritidae). Environmental Entomology 19, 17261731.Google Scholar
Konstantopoulou, M.A., Raptopoulos, D.G., Stavrakis, N.G. & Mazomenos, B.E. (2005) Microflora species and their volatile compounds affecting development of an alcohol dehydrogenase homozygous strain (Adh-I) of Bactrocera (Dacus) oleae (Diptera: Tephritidae). Journal of Economic Entomology 98, 19431949.Google Scholar
Kounatidis, I., Crotti, E., Sapountzis, P., Sacchi, L., Rizzi, A. & Chouaia, B. (2009) Acetobacter tropicalis Is a Major Symbiont of the Olive Fruit Fly (Bactrocera oleae). Applied Environmental Microbiology 75, 32813288.CrossRefGoogle Scholar
Kuzina, L.V., Peloquin, J.J., Vacek, D.C. & Miler, T.A. (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Current Microbiology 42, 290294.Google Scholar
Lauzon, C.R. (2003) Symbiotic relationships of Tephritids. pp. 115129 in Bourtzis, K. & Miller, T.A. (Eds) Insect Symbiosis. Boca Raton, FL, CRC Press.Google Scholar
Lauzon, C.R., Sjogren, R.E. & Prokopy, R.J. (2000) Enzymatic capabilities of bacteria associated with apple maggot flies: a postulated role in attraction. Journal of Chemical Ecology 26, 953967.Google Scholar
Lauzon, C.R., Bussert, T.G., Sjogren, R.E. & Prokopy, R.J. (2003) Serratia marcescens as a bacterial pathogen of Rhagoletis pomonella flies (Diptera: Tephritidae). European Journal of Entomology 100, 8792.Google Scholar
Li, H.X. & Ye, H. (2000) Infestation and distribution of the Oriental fruit fly (Diptera: Tephritidae) in Yunnan Province. Journal of Yunnan University 22, 473475 (In Chinese).Google Scholar
Li, W.F., Yang, L., Tang, K., Zeng, L. & Liang, G.W. (2007) Microsatellite polymorphism of Bactrocera dorsalis (Hendel) populations in China. Acta Entomologica Sinica 50, 12551262 (In Chinese).Google Scholar
Li, Y.L., Wu, Y., Chen, H., Wu, J.J. & Li, Z.H. (2012) Population structure and colonization of Bactrocera dorsalis (Diptera: Tephritidae) in China, inferred from mtDNA COI sequences. Journal of Applied Entomology 136, 241251.Google Scholar
Liu, J., Zhao, H., Jiang, K., Zhou, X.P. & Liu, S.S. (2009) Differential indirect effects of two plant viruses on an invasive and an indigenous whitefly vector: implications for competitive displacement. Annals of Applied Biology 155, 439448.Google Scholar
Lu, M., Zhou, X.D., De Beer, Z.W., Wingfield, M.J. & Sun, J.H. (2009) Ophiostomatoid fungi associated with the invasive pine-infesting bark beetle, Dendroctonus valens, in China. Fungal Diversity 38, 133145.Google Scholar
Mazzon, L., Piscedda, A., Simonato, M., Martinez-Sañudo, I., Squartini, A. & Girolami, V. (2008) Presence of specific symbiotic bacteria in flies of the subfamily Tephritinae (Diptera: Tephritidae) and their phylogenetic relationships: proposal of ‘Candidatus Stammerula tephritidis. International Journal of Systematic Evolutionary Microbiology 58, 12771287.CrossRefGoogle ScholarPubMed
Mazzon, L., Martinez-Sanudo, I., Simonato, M., Squartini, A., Savio, C.& Girolami, V. (2010) Phylogenetic relationships between flies of the Tephritinae subfamily (Diptera, Tephritidae) and their symbiotic bacteria. Molecular Phylogenetics and Evolution 56, 312326.Google Scholar
Miyazaki, S., Boush, G.M. & Baerwald, R.J. (1968) Amino acid synthesis by pseudomonas melophthora bacterial symbiote of Rhagoletis pomonella (Diptera). Journal of Insect Physiology 14, 513518.Google Scholar
Morrow, J.L., Frommer, M., Shearman, D.C.A. & Riegler, M. (2015 a) The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microbial Ecology 70, 498508.Google Scholar
Morrow, J.L., Frommer, M., Royer, J.E., Shearman, D.C.A. & Riegler, M. (2015 b) Wolbachia pseudogenes and low prevalence infections in tropical but not temperate Australian tephritid fruit flies: manifestations of lateral gene transfer and endosymbiont spillover? BMC Evolutionary Biology 15, 202218.Google Scholar
Rani, A., Sharma, A., Rajagopal, R., Adak, T. & Bhatnagar, R.K. (2009) Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiology 9, 96.Google Scholar
Robacker, D.C. & Lauzon, C.R. (2002) Purine metabolizing capability of Enterobacter agglomerans affects volatiles production and attractiveness to Mexican fruit fly. Journal of Chemical Ecology 28, 15491563.Google Scholar
Robacker, D.C., Lauzon, C.R. & He, X.D. (2004) Volatiles production and attractiveness to the Mexican fruit fly of Enterobacter agglomerans isolated from apple maggot and Mexican fruit flies. Journal of Chemical Ecology 30, 13291347.CrossRefGoogle Scholar
Robacker, D.C., Lauzon, C.R., Patt, J., Margara, F. & Sacchetti, P. (2009) Attraction of Mexican fruit flies (Diptera: Tephritidae) to bacteria: effects of culturing medium on odour volatiles. Journal of Applied Entomology 133, 155163.Google Scholar
Sacchetti, P., Granchietti, A., Landini, S., Viti, C., Giovannetti, L. & Belcari, A. (2008) Relationships between the olive fly and bacteria. Journal of Applied Entomology 132, 682689.Google Scholar
Schloss, P.D., Delalibera, I., Handelsman, J. & Raffa, K.F. (2006) Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environmental Entomology 35, 625629.Google Scholar
Schutze, M.K., Mahmood, K., Pavasvici, A., Bo, W., Newman, J., Clarke, A.R., Krosch, M.N. & Cameron, S. (2015) One and the same: integrative taxonomic evidence that Bactrocera invadens (Diptera: Tephritidae) is the same species as the Oriental fruit fly Bactrocera dorsalis . Systematic Entomology 40, 472486.Google Scholar
Shi, W., Kerdelhue, C. & Ye, H. (2010) Population genetic structure of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) from Yunnan province (China) and nearby sites across the border. Genetica 138, 377385.Google Scholar
Sun, X., Cui, L.W. & Li, Z.H. (2007) Diversity and Phylogeny of Wolbachia infecting Bactrocera dorsalis (Diptera:Tephritidae) populations from China. Environmental Entomology 36, 12831289.CrossRefGoogle Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology Evolution 24, 15961599.Google Scholar
Tang, M., Lv, L., Jing, S.L., Zhu, L.L. & He, G.C. (2010) Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Applied Environmental Microbiology 76, 17401745.Google Scholar
Thao, M.L., Gullan, P.J. & Baumann, P. (2002) Secondary (Proteobacteria) endosymbionts infect the primary (gamma-) endosymbionts of mealybugs multiple times and coevolve with their hosts. Applied Environmental Microbiology 68, 31903197.CrossRefGoogle ScholarPubMed
Tsiropoulos, G.J. (1983) Microflora associated with wild and laboratory reared adult olive fruit flies, Dacus oleae (Gmel). Journal of Applied Entomology 96, 337340.Google Scholar
Wang, H., Jin, L. & Zhang, H. (2011) Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. Journal of Applied Microbiology 110, 13901401.Google Scholar
Wang, H., Jin, L., Peng, T., Zhang, H., Chen, Q. & Hua, Y. (2014) Identification of cultivable bacteria in the intestinal tract of Bactrocera dorsalis from three different populations and determination of their attractive potential. Pest Management Science 70, 8087.Google Scholar
Zhou, G.L., Ye, J., Yuan, P. & Pan, S.H. (2006) The invasive mechanism of Bactrocera dorsalis in Shanghai. Plant Quarantine (in Chinese) 20, 4446.Google Scholar
Supplementary material: Image

Liu supplementary material

Figure

Download Liu supplementary material(Image)
Image 567.8 KB
Supplementary material: File

Liu supplementary material

Table

Download Liu supplementary material(File)
File 42.5 KB