Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T16:54:41.410Z Has data issue: false hasContentIssue false

Accumulated temperatures for predicting the time of emergence in the spring of the cabbage root fly, Delia radicum (L.) (Diptera: Anthomyiidae)

Published online by Cambridge University Press:  10 July 2009

Rosemary H. Collier
Affiliation:
National Vegetable Research Station, Wellesbourne, Warwick., CV35 9EF, UK
S. Finch
Affiliation:
National Vegetable Research Station, Wellesbourne, Warwick., CV35 9EF, UK

Abstract

Laboratory experiments showed that 4°C, rather than 6°C as used previously by most authors, was a suitable base temperature for calculating the number of day-degrees C required to predict the time of emergence in the spring of Delia radicum (L.); 1 February was an appropriate date to start the accumulation, as more than 50% of the pupae had completed diapause by this time and were therefore able to proceed with their development.The time of 50% fly emergence in the spring was estimated more accurately from accumulated day-degrees 6 cm deep in the soil, the average depth of overwintering puparia, than from accumulated air day-degrees calculated from standard meteorological measurements of air temperature. At Wellesbourne, England, approximately 179 ± 8 soil day-degrees above 4°C or 230± 10 air day-degrees above 4°C were required for 50% emergence in the spring. In general, males emerged 25–50 day-degrees above 4°C (4–8 days) before females. A further 60–170 day-degrees above 4°(2–5 weeks) then elapsed before maximum fly activity occurred in new host crops.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. (1969). Tables for the evaluation of daily values of accumulated temperature above and below 42°F from daily values of maximum and minimum temperature.—Meteorological Office Leaflet no. 10, 10 pp.Google Scholar
Baker, C. R. B. (1980). Some problems in using meteorological data to forecast the timing of insect life cycles.—EPPO Bull. 10 (2), 8391.CrossRefGoogle Scholar
Coaker, T. H. & Wright, D. W. (1963). The influence of temperature on the emergence of the cabbage root fly (Erioischia brassicae (Bouché)) from overwintering pupae.—Ann. appl. Biol. 52, 337343.Google Scholar
Collier, R. H. & Finch, S. (1983 a). Effects of intensity and duration of low temperatures in regulating diapause development of the cabbage root fly (Delia radicum).—Entomologia exp. appl. 34, 193200.CrossRefGoogle Scholar
Collier, R. H. & Finch, S. (1983 b). Completion of diapause in field populations of the cabbage root fly (Delia radicum).—Entomologia exp. appl. 34, 186192.CrossRefGoogle Scholar
Eckenrode, C. J. & Chapman, R. K. (1971). Effect of various temperatures upon rate of development of the cabbage maggot under artificial conditions.—Ann. ent. Soc. Am. 64, 10791083.Google Scholar
Eckenrode, C. J. & Chapman, R. K. (1972). Seasonal adult cabbage maggot populations in the field in relation to thermal-unit accumulations.—Ann. ent. Soc. Am. 65, 151156.CrossRefGoogle Scholar
Finch, S. (1971). The fecundity of the cabbage root fly Erioischia brassicae under field conditions.—Entomologia exp. appl. 14, 147160.CrossRefGoogle Scholar
Finch, S. (1977). Monitoring insect pests of cruciferous crops. -pp 219226in Proceedings of the 1977 British Crop Protection Conference—Pests and Diseases (9th British Insecticide and Fungicide Conference)21st to 24th November 1977Hotel Metropole,Brighton, England Volume 1.—pp 1322 London. Br. Crop Prot. CounGoogle Scholar
Finch, S. & Coaker, T. H. (1969). A method for the continuous rearing of the cabbage root fly Erioischia brassicae (Bch.) and some observations on its biology.—Bull.ent. Res. 58, 619627.CrossRefGoogle Scholar
Finch, S. & Collier, R. H. (1983). Emergence of flies from overwintering populations of cabbage root fly pupae.—Ecol. Entomol. 8, 2936.Google Scholar
Finch, S. & Skinner, G. (1974). Some factors affecting the efficiency of water-traps for capturing cabbage root flies.—Ann. appl. Biol. 77, 213226.CrossRefGoogle Scholar
Finch, S. & Skinner, G. (1980). Mortality of overwintering pupae of the cabbage root fly (Delia brassicae).—J. appl. Ecol. 17, 657665.CrossRefGoogle Scholar
Hughes, R. D. (1960). Induction of diapause in Erioischia brassicae Bouché (Dipt., Anthomyiidae).—J. exp. Biol. 37, 218223.CrossRefGoogle Scholar
Missonier, J. (1963). Étude écologique du développement nymphal de deux diptères muscides phytophages: Pegomyia betae Curtis et Chortophila brassicae Bouché.—Annls Épiphyt. 14, 293310.Google Scholar
Nair, K. S. S. & McEwen, F. L. (1975). Ecology of the cabbage maggot, Hylemya brassicae (Diptera: Anthomyiidae), in rutabaga in south-western Ontario, with some observations on other root maggots.—Can. Ent. 107, 343354.CrossRefGoogle Scholar
Read, D. C. (1962). Notes on the life history of Aleochara bilineata (Gyll.) (Coleoptera: Staphylinidae), and on its potential value as a control agent for the cabbage maggot, Hylemya brassicae (Bouché) (Diptera: Anthomyiidae).—Can. Ent. 94, 417424.Google Scholar
Sharpe, P. J. H. & DeMichele, D. W. (1977).Reaction kinetics of poikilotherm development.—J. theor. Biol. 64, 649670.CrossRefGoogle ScholarPubMed
Van Kirk, J. R. & Aliniazee, M. T. (1981). Determining low-temperature threshold for pupal development of the western cherry fruit fly for use in phenology models.—Environ. Entomol. 10, 968971.Google Scholar
Vincent, C. & Stewart, R. K. (1981). Évaluation de deux types de pièges pour le dépistage des adultes de la mouche du chou, Hylemya (Delia) brassicae (Wiedemann) (Diptera: Anthomyiidae).—Ann. ent. Soc. Queb. 26, 4150.Google Scholar
Wyman, J. A., Libby, J. L. & Chapman, R. K. (1977). Cabbage maggot management aided by predictions of adult emergence.—J. econ. Ent. 70, 327331.CrossRefGoogle Scholar