Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T06:34:06.520Z Has data issue: false hasContentIssue false

Susceptibility and possible resistance mechanisms in the palm species Phoenix dactylifera, Chamaerops humilis and Washingtonia filifera against Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae)

Published online by Cambridge University Press:  15 March 2016

B. Cangelosi
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Unit for Floriculture and Ornamental Species (CREA-FSO), Corso degli Inglesi 508, 18038 Sanremo, Italy
F. Clematis
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Unit for Floriculture and Ornamental Species (CREA-FSO), Corso degli Inglesi 508, 18038 Sanremo, Italy
P. Curir*
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Unit for Floriculture and Ornamental Species (CREA-FSO), Corso degli Inglesi 508, 18038 Sanremo, Italy
F. Monroy
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Unit for Floriculture and Ornamental Species (CREA-FSO), Corso degli Inglesi 508, 18038 Sanremo, Italy
*
*Author for correspondence Tel: +39 0184 694841 Fax: +39 0184 694856 E-mail: [email protected]

Abstract

Rhynchophorus ferrugineus, known as the Red Palm Weevil (RPW), is reported as a pest of up to 40 palm species. However, the susceptibility degree and the defense mechanisms of these species against this weevil are still poorly known. In Europe, the RPW is a major pest of Phoenix canariensis while other palm species, including the congeneric Phoenix dactylifera, seem to be less suitable hosts for this insect. The aim of our study was to compare the defensive response of P. dactylifera, Chamaerops humilis and Washingtonia filifera against R. ferrugineus and try to define the mechanisms of resistance that characterize these species. Bioassays were carried out to evaluate the mortality induced on RPW larvae by extracts from the leaf rachis of the studied palm species. Tests at semi-field scale were also conducted, based either on forced palm infestation, with larvae of RPW, or on natural infestation, with adult females. Rachis extracts from C. humilis and W. filifera caused 100% larval mortality after 2 days of exposure, while extracts of P. dactylifera did not impair larval survival. Independently of the effect of the leaf extracts, the weevils were unable to naturally infest the three palm species, although larval survival was high after forced infestation of the plants. We concluded that the observed lack of infestation of P. dactylifera by RPW is due to factors other than antibiosis. In W. filifera and C. humilis, although the presence of antixenosis mechanisms cannot be excluded, resistance to R. ferrugineus seems to rely on the presence of antibiosis compounds.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, V.A., Al Shuaby, M., Faleiro, J.R., Abouzuharah, R.A. & Vidyasagar, P.S.P.V. (1998) An integrated approach for the Management of Red Palm Weevil Rhynchophorus ferrugineus Oliv. – A key pest of date palm in the Middle East. Sultan Qaboos University Journal for Scientific Research, Agricultural Science 3, 7783.Google Scholar
Al-Ayedh, H. (2008) Evaluation of date palm cultivars for rearing the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Florida Entomologist 91, 353358.Google Scholar
Asami, A., Hirai, Y. & Shoji, J. (1991) Studies on the constituents of palmae plants. VI. Steroid saponins and flavonoids of leaves of Phoenix canariensis hort. ex Chabaud, P. humilis Royle var. hanceana Becc., P. dactylifera L., and Licuala spinosa Wurmb. Chemical and Pharmaceutical Bulletin 39, 20532056.Google Scholar
Barranco, P., de la Peña, J.A., Martín, M.M. & Cabello, T. (2000) Host rank for Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae) and host diameter. Boletín de Sanidad Vegetal, Plagas 26, 7378.Google Scholar
Benmehdi, H., Hasnaoui, O., Benali, O. & Salhi, F. (2012) Phytochemical investigation of leaves and fruits extracts of Chamaerops humilis L.. Journal of Materials and Environmental Science 3, 320–237.Google Scholar
Cangelosi, B., Clematis, F., Monroy, F., Roversi, P., Troiano, R., Curir, P. & Lanzotti, V. (2015) Filiferol, a chalconoid analogue from Washingtonia filifera possibly involved in the defence against the Red Palm Weevil Rhynchophorus ferrugineus Olivier. Phytochemistry 115, 216221.CrossRefGoogle ScholarPubMed
Dembilio, Ó. & Jacas, J.A. (2012) Bio-ecology and integrated management of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera, Curculionidae) in the region of Valencia (Spain). Hellenic Plant Protection Journal 5, 111.Google Scholar
Dembilio, Ó., Jacas, J.A. & Llácer, E. (2009) Are the palms Washingtonia filifera and Chamaerops humilis suitable hosts for the red palm weevil, Rhynchophorus ferrugineus (Col. Curculionidae)? Journal of Applied Entomology 133, 565567.Google Scholar
Dembilio, Ó., Tapia, G.V., Téllez, M.M. & Jacas, J.A. (2012) Lower temperature thresholds for oviposition and egg hatching of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in a Mediterranean climate. Bulletin of Entomological Research 102, 97102.Google Scholar
El-Mergawy, R.A.A.M. & Al-Ajlan, A.M. (2011) Red Palm Weevil, Rhynchophorus ferrugineus (Olivier): Economic importance, biology, biogeography and integrated pest management. Journal of Agricultural Science and Technology A 1, 123.Google Scholar
El-Sayed, N.H., Ammar, N.M., Al-Okbi, S.Y., El-Kassem, L.T. & Mabry, T.J. (2006) Antioxidant activity and two new flavonoids from Washingtonia filifera. Natural Product Research 20, 5761.Google Scholar
EPPO (2008) Rhynchophorus ferrugineus. EPPO Bulletin 38, 5559.Google Scholar
EPPO (2010) First record of Rhynchophorus ferrugineus in the USA. EPPO Reporting Service 10, 3.Google Scholar
Faleiro, J.R., El-Shafie, H.A.F., Ajlan, A.M. & Sallam, A.A. (2014) Screening date palm cultivars for resistance to Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Florida Entomologist 97, 15291536.Google Scholar
Farazmand, H. (2002) Investigation on the reasons of food preference of red palm weevil, Rhynchophorus ferrugineus Oliv. Applied Entomology and Phytopathology 70, 1112.Google Scholar
Ferry, M. & Gómez, S. (2002) The red palm weevil in the Mediterranean area. Palms 46, 172178.Google Scholar
Giblin-Davis, R.M., Oehlschlager, A.C., Pérez, A., Gries, G., Gries, R., Weissling, T.J., Chinchilla, C.M., Peña, J.E., Hallet, R.H., Pierce, H.D. Jr. & González, L.M. (1996) Chemical and behavioral ecology of palm weevils (Curculionidae: Rhynchophorinae). Florida Entomologist 79, 153167.CrossRefGoogle Scholar
Giovino, A., Scibetta, S., Gugliuzza, G., Longo, S., Suma, P. & La Mantia, T. (2012) Attacks of Rhynchophorus ferrugineus (Olivier) (Coleoptera Curculionidae) on natural specimens of dwarf fan palm Chamaerops humilis in Sicily. Naturalista Siciliano 4, 427433.Google Scholar
Hirai, Y., Sanada, S., Ida, Y. & Shoji, J. (1986) Studies on the constituents of palmae plants. III. The constituents of Chamaerops humilis L. and Trachycarpus wagnerianus Becc. Chemical and Pharmaceutical Bulletin 34, 8287.Google Scholar
Hussain, A., Haq, M.R.U., Al-Jabr, A.M. & Al-Ayied, H.Y. (2013) Managing invasive populations of red palm weevil: A worldwide perspective. Journal of Food Agriculture and Environment 11, 456463.Google Scholar
Ju, R.T., Wang, F., Wan, F.H. & Li, B. (2011) Effect of host plants on development and reproduction of Rhynchophorus ferrugineus (Olivier) (Coleoptera, Curculionidae). Journal of Pest Science 84, 3339.Google Scholar
Kogan, M. & Ortman, E.F. (1978) Antixenosis – a new term proposed to define Painter's ‘non preference’ modality of resistance. Bulletin of the Entomological Society of America 24, 175176.Google Scholar
Llácer, E., Negre, M. & Jacas, J.A. (2012) Evaluation of an oil dispersion formulation of imidacloprid as a drench against Rhynchophorus ferrugineus (Coleoptera, Curculionidae) in young palm trees. Pest Management Science 68, 878882.Google Scholar
Lo Bue, P., Guarino, S., Lucido, P., Peri, E., Pulizzi, M. & Colazza, S. (2010) Trapping of the Red Palm weevil with traps baited with pheromone and allomones in urban areas. Protezione delle Colture 4, 4649.Google Scholar
Longo, S., Anderson, P.J., Smith, T.R., Stanley, J.D. & Inserra, R.N. (2011) New palm hosts for the red palm weevil, Rhynchophorus ferrugineus, in Sicily. Palms 55, 1520.Google Scholar
Malumphy, C. & Moran, H. (2009) Red palm weevil Rhynchophorus ferrugineus. Plant Pest Factsheet. Available online at http://fera.co.uk/plantClinic/documents/factsheets/redPalmWeevil.pdfGoogle Scholar
Nirula, K.K. (1956 a) Investigation on the pests of coconut palm. Part IV. Rhynchophorus ferrugineus. Indian Coconut Journal 9, 229247.Google Scholar
Nirula, K.K. (1956 b) Investigation on the pests of coconut palm. Part IV. Rhynchophorus ferrugineus. Indian Coconut Journal 10, 2844.Google Scholar
Núñez-Farfán, J., Fornoni, J. & Valverde, P.L. (2007) The evolution of resistance and tolerance to herbivores. Annual Review of Ecology, Evolution, and Systematics 38, 541566.Google Scholar
Painter, R.H. (1958) Resistance of plants to insects. Annual Review of Entomology 3, 267290.CrossRefGoogle Scholar
R Core Team (2015) A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing. Available online at http://www.R-project.org/Google Scholar
Roda, A., Kairo, M., Damian, T., Franken, F., Heidweiller, K., Johanns, C. & Mankin, R. (2011) Red palm weevil (Rhynchophorus ferrugineus), an invasive pest recently found in the Caribbean that threatens the region. EPPO Bulletin 41, 116121.CrossRefGoogle Scholar
Rugman-Jones, P.F., Hoddle, C.D., Hoddle, M.S. & Stouthamer, R. (2013) The lesser of two weevils: molecular-genetics of pest palm weevil populations confirm Rhynchophorus vulneratus (Panzer 1798) as a valid species distinct from R. ferrugineus (Olivier 1790), and reveal the global extent of both. PLoS ONE 8, e78379.Google Scholar
Sacco, M., Cangelosi, B., Arato, E., Littardi, C. & Pasini, C. (2011) Efficacy of different insecticides against Rhynchophorus ferrugineus (Olivier) under controlled conditions on palms Phoenix canariensis. Protezione delle Colture 4, 9098.Google Scholar
Salem, M.S., Belal, M.H., Nour, M.E. & Sayed, E.A. (2012) Detection of a chemical marker from ovipositing females in Rhynchophorus ferrugineus Olivier (Coleoptera, Curculionidae). Advances in Environmental Biology 6, 21642169.Google Scholar
Sallam, A.A., El-Shafie, H.A.F. & Al-Abdan, S. (2012) Influence of farming practices on infestation by red palm weevil Rhynchophorus ferrugineus (Olivier) in date palm: a case study. International Research Journal of Agricultural Science and Soil Science 2, 370376.Google Scholar
SAP (2015) Home page. Available online at http://www.savealgarvepalms.com/en/weevil-facts/host-palm-trees (Retrieved July 23)Google Scholar
Viechtbauer, W. (2010) Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36, 148.Google Scholar
Wattanapongsiri, A. (1966) A revision of the genera Rhynchophorus and Dynamis (Coleoptera, Curculionidae). Science Bulletin 1. pp. 328, Bangkok, Department of Agriculture.Google Scholar
Yamane, H., Konno, K., Sabelis, M., Takabayashi, J., Sassa, T. & Oikawa, H. (2010) Chemical defence and toxins of plants. pp. 339385in Mander, L. & Liu, H.W. (Eds) Comprehensive Natural Products II: Chemistry and Biology 4. Oxford, Elsevier.Google Scholar