Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T04:52:45.306Z Has data issue: false hasContentIssue false

Post-fumigation productivity of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) exposed to acrylonitrile, adjuvants of acrylonitrile, acrylonitrilel-adjuvant mixtures and other modern fumigants

Published online by Cambridge University Press:  10 July 2009

S. Rajendran
Affiliation:
Infestation Control and Pesticides Discipline, Central Food Technological Research Institute, Mysore-570 013, India
M. Muthu
Affiliation:
Infestation Control and Pesticides Discipline, Central Food Technological Research Institute, Mysore-570 013, India

Abstract

LD50 doses of chloropicrin, ethylene oxide, ethylene dibromide, acrylonitrile plus 8% carbon dioxide, and acrylonitrile plus ethylene dibromide were found to decrease the productivity of adults of Sitophilus oryzae (L.) and Tribolium castaneum (Hbst.). Acrylonitrile, acrylonitrile plus methyl iodide and phosphine caused a reduction in productivity in S. oryzae but not in T. castaneum. Carbon dioxide decreased the productivity of T. castaneum. Carbon tetrachloride, methylene chloride, methyl bromide, methyl iodide, acrylonitrile plus carbon tetrachloride and acrylonitrile plus methylene chloride had little influence on the productivity. The productivity of T. castaneum exposed to trichloroethylene and acrylonitrile plus trichloroethylene was higher than in control batches. After exposure to acrylonitrile, reduced productivity was noted in adults of Callosobruchus chinensis (L.) that had been exposed as adults or pupae, and in T. castaneum but not S. oryzae that had been exposed as pupae.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide.—J. econ. Ent. 18, 265267.CrossRefGoogle Scholar
Bell, C. H. (1976). The tolerance of immature stages of four stored product moths to methyl bromide.—J. stored Prod. Res. 12, 110.CrossRefGoogle Scholar
Bell, C. H. (1977). Tolerance of the diapausing stages of four species of Lepidoptera to methyl bromide.—J. stored Prod. Res. 13. 119127.CrossRefGoogle Scholar
Brudnaya, A. A., Chudinova, A. N. & Anoskina, N.I. (1966). Effect of sublethal doses of toxic chemicals on granary pests [in Russian].—Ent. Obozr. 45, 8394.Google Scholar
Finney, D. J. (1971). Probit analysis.—333 pp. Cambridge University Press.Google Scholar
Fyg, W. (1950). Beobachtungen ueber die Wirkungen der Kohlensäure — Narkose auf Arbeitsbienen.—Schweiz. Bienenztg 73, 174184.Google Scholar
Gough, H. C. (1939). Factors affecting the resistance of the flour beetle, Tribolium confusum Duv., to hydrogen cyanide.—Ann. appl. Biol. 26, 533571.CrossRefGoogle Scholar
Herrick, G. W. & Horsfall, W. R. (1931). The reproductivity of the bean weevil (Mylabris obtectus Say) as affected by the vapor of ethylene oxide.—J. econ. Ent. 24, 10841086.CrossRefGoogle Scholar
Horsfall, W. R. (1934). Some effects of ethylene oxide on the various stages of the bean weevil and the confused flour beetle.—J. econ. Ent. 27, 405409.CrossRefGoogle Scholar
Hoskins, W. M. (1940). Recent contributions of insect physiology to insect toxicology and conlrol.—Hilgardia 13, 307386.CrossRefGoogle Scholar
Howe, R. W. (1952). The biology of the rice weevil, Calandra oryzae (L.).—Ann. appl. Biol. 39, 168180.CrossRefGoogle Scholar
Howe, R. W. (1973). The susceptibility of the immature and adult stages of Sitophilus granarius to phosphine.—J. stored Prod. Res. 8, 241262.CrossRefGoogle Scholar
Howe, R. W. (1974). Problems in the laboratory investigation of the toxicity of phosphine to stored product insects.—J. stored Prod. Res. 10, 167181.CrossRefGoogle Scholar
Janisch, E. (1924). Ueber die experimentelle Beeinflussung der Lebensdauer und des Alterns schädlicher Insekten. I. Mitteilung.—Arb. biol. ReichsAnst. Land- u. Forstw. 13, 173195.Google Scholar
Kashi, K. P. & Bond, E. J. (1975). The toxic action of phosphine: role of carbon dioxide on the toxicity of phosphine to Sitophilus granarius (L.) and Tribolium confusum DuVal.—J. stored Prod. Res. 11, 915.CrossRefGoogle Scholar
Kashi, K. P., Rajendran, S. & Muthu, M. (1977). Toxicity of methyl iodide to the life stages of Sitophilus oryzae (L) and Callosobruchus chinensis (L).—Bull. Grain Technol. 15, 3437.Google Scholar
Kazmaier, H. E. & Fuller, R. G. (1959). Ethylene dibromide: methyl bromide mixtures as fumigants against the confused flour beetle.—J. econ. Ent. 52, 10811085.CrossRefGoogle Scholar
Loschiavo, S. R. (1960). Effects of low doses of ethylene dibromide on some stages of the confused flour beetle, Tribolium confusum. —J. econ. Ent. 53, 762767.CrossRefGoogle Scholar
Lum, P. T. M. (1974). Effect of carbon dioxide anesthesia at eclosion upon mating efficiency of male Plodia interpunctella (Lepidoptera: Pyralidae).—J. stored Prod. Res. 10, 6971.CrossRefGoogle Scholar
Lum, P. T. M. & Flaherty, B. R. (1972). Effect of carbon dioxide on production and hatch-ability of eggs of Plodia interpunctella (Lepidoptera: Phycitidae).—Ann. ent. Soc. Am. 65, 976977.CrossRefGoogle Scholar
Parkin, E. A. (1946). The toxicity of certain aliphatic chlorinated hydrocarbons to Calandra granaria L. and other insects infesting grain.—Ann. appl. Biol. 33, 97103.CrossRefGoogle ScholarPubMed
Perron, J. M., Huot, L., Corrivault, G. W. & Chawla, S. S. (1972). Effects of carbon dioxide anaesthesia on Drosophila meianogaster.—J. Insect Physiol. 18, 18691874.CrossRefGoogle Scholar
Punj, G. K. & Verma, A. N. (1970). Susceptibility to certain fumigants of male and female pupae of Trogoderma granarium Everts (Coleoptera, Dermestidae).—J. stored Prod. Res. 6, 263267.CrossRefGoogle Scholar
Qureshi, A. H., Bond, E. J. & Monro, H. A. U. (1965). Toxicity of hydrogen phosphide to the granary weevil, Sitophilus granarius, and other insects.—J. econ. Ent. 58, 324331.CrossRefGoogle Scholar
Reynolds, E. M., Robinson, J. M. & Howells, C. (1967). The effect on Sitophilus granarius (L.) (Coleoptera, Curculionidae) of exposure to low concentrations of phosphine.— J. stored Prod. Res. 2, 177186.CrossRefGoogle Scholar
Roark, R. C. & Nelson, O. A. (1929). Maximum weights of various fumigants which can exist in vapor form in a 1,000 cubic foot fumigating chamber.—J. econ. Ent. 22, 381387.CrossRefGoogle Scholar
Solomon, M. E. (1955). The relative control values of different percentage mortalities.—Bull. ent. Res. 46, 189191.CrossRefGoogle Scholar
Spratt, E. C. (1979 a). Some effects of a mixture of oxygen, carbon dioxide and nitrogen in the ratio 1:1:8 on the oviposition and development of Sitophilus zeamais Mots. (Coleoptera, Curculionidae).—J. stored Prod. Res. 15, 7380.CrossRefGoogle Scholar
Spratt, E. C. (1979 b). The effects of a mixture of oxygen, carbon dioxide and nitrogen in the ratio 1:1:8 on the longevity and the rate of increase of populations of Sitophilus zeamais Mots.—J. stored Prod. Res. 15, 8185.CrossRefGoogle Scholar
Winks, R. G. (1971). The inhibitory effect of phosphine on reproduction of Tribolium castaneum (Herbst).—145 pp. M.Sc. thesis, Univ. Queensland.Google Scholar