Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T21:20:59.324Z Has data issue: false hasContentIssue false

A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidae)

Published online by Cambridge University Press:  07 September 2012

S. Nava*
Affiliation:
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
A.A. Guglielmone
Affiliation:
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
*
*Author for correspondence Fax: +54 03492440114 E-mail: [email protected]

Abstract

Host specificity of Neotropical hard ticks (Acari: Ixodidae) was analyzed by using the number of hosts species for each tick species and the index of host specificity STD*, which integrates phylogenetic and ecological information. The analyses were based on 4172 records of hard ticks collected from wild and domestic tetrapods. Most tick species included in this study were associated with three to 20 host species. No tick species has been associated either with a single species or with a single genus of host. It was found that the number of host species is sensitive to sampling effort, but not the STD*. The most frequent values of STD* were between 2.5 and 3.5, which shows that the host species more frequently used by Neotropical hard tick species belong to different families or different orders. Immature stages tend to use a broader taxonomic range of hosts than adults, and the interpretation of both measures of host specificity used in this study led to the conclusion that the impact of non-endemic hosts does not alter the patterns of host specificity in Neotropical hard ticks. The index STD* showed that a high proportion of tick species has phylogenetically unrelated species as principal hosts. The conclusion reached in this work indicates that strict host specificity is not common among Neotropical hard ticks and suggests that the influence of tick ecology and evolution of habitat specificity, tick generation time, phenology, time spent off the host and the type of life-cycle could be more important than hosts species.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosta, S.J. & Klemens, J.A. (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecology Letters 11, 11231134.Google Scholar
Agosta, S.J., Janz, N. & Brooks, D.R. (2010) How specialists can be generalists: resolving the “parasite paradox” and implications for emerging disease. Zoologia. 27, 151162.Google Scholar
Aguirre, D.H., Viñabal, A.E. & Guglielmone, A.A. (1999) The life cycle of Amblyomma neumanni Ribaga, 1902 (Acari: Ixodidae) in the laboratory. Experimental and Applied Acarology 23, 159164.Google Scholar
Balashov, Y.S. (2004) The main trends in the evolution of ticks (Ixodida). Entomological Review 84, 814824.Google Scholar
Barquez, R.M., Díaz, M.M. & Ojeda, R.A. (2006) Mamíferos de Argentina: Sistemática y Ddistribución. Tucumán, Argentina, Sociedad Argentina para el Estudio de los Mamíferos (SAREM).Google Scholar
Brooks, D.R. & Hoberg, E.P. (2007) How will global climate change affect parasite-host assemblages? Trends in Parasitology 23, 571574.Google Scholar
Brooks, D.R. & McLennan, D.A. (1993) Parascript: Parasites and the Language of Evolution. Washington DC, USA, Smithsonian Institution Press.Google Scholar
Brooks, D.R., Leon-Regagnon, V., McLennan, D.A. & Zelmer, D. (2006a) Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology 87, 7685.Google Scholar
Brooks, D.R., McLennan, D.A., Leon-Regagnon, V. & Hoberg, E. (2006b) Phylogeny, ecological fitting and lung flukes: helping solve the problem of emerging infectious diseases. Revista Mexicana de Biodiversidad 77, 225233.Google Scholar
Chacon, S.C., Faccini, J.L.H. & Bittencourt, V.R.E.P. (2004) Successful infestation by Amblyomma pseudoconcolor and A. cooperi (Acari: Ixodidae) on horses. Annals of New York Academic Sciences 1026, 232234.CrossRefGoogle Scholar
Clements, J.F. (2007) The Clements Checklist of Birds of the World. 6th edn.Ithaca, NY, USA, Cornell University Press.Google Scholar
Cumming, G.S. (1998) Host preference in African ticks (Acari: Ixodida): a quantitative data set. Bulletin of Entomological Research 88, 379406.Google Scholar
Cumming, G.S. (2002) Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 83, 255268.CrossRefGoogle Scholar
D'Elía, G., Pardiñas, U.F.J., Jayat, P. & Salazar-Bravo, J. (2008) Systematics of Necromys (Rodentia, Cricetidae, Sigmodontinae): species limits and groups, with comments on historical biogeography. Journal of Mammalogy 89, 778790.Google Scholar
Dick, C.W. & Patterson, B.D. (2007) Against all odds: explaining high host specificity in dispersal-prone parasites. International Journal for Parasitology 37, 871876.CrossRefGoogle ScholarPubMed
Faccini, J.L.H., Cardoso, A.C.B., Onofrio, V.C., Labruna, M.B. & Barros-Battesti, D.M. (2010) The life cycle of Amblyomma auricularium (Acari: Ixodidae) using rabbits (Oryctolagus cuniculus) as experimental host. Experimental and Applied Acarology 50, 7177.CrossRefGoogle ScholarPubMed
Fenton, A. & Pedersen, A.B. (2005) Community epidemiology framework for classifying disease threats. Emerging Infectious Diseases 11, 18151821.Google Scholar
Francés, J. & D'Elia, G. (2006) Oligoryzomys delticola es sinónimo de O. nigripes (Rodentia, Cricetidae, Sigmodontinae). Mastozoología Neotropical 13, 123131.Google Scholar
Gandon, S., Buckling, A., Decaestecker, E. & Day, T. (2008) Host-parasite coevolution and patterns of adaptation across time and space. Journal of Evolutionary Biology 21, 18611866.CrossRefGoogle ScholarPubMed
Guégan, J.F. & Kennedy, C.R. (1996) Parasite richness/sampling effort/host range: the fancy three-piece jigsaw puzzle. Parasitology Today 12, 367369.Google Scholar
Guglielmone, A.A. & Mangold, A.J. (1993) Cross mating between Amblyomma parvum Aragao, 1908 and Amblyomma pseudoparvum Guglielmone, Mangold and Keirans, 1990. Folia Parasitologica 40, 144145.Google Scholar
Guglielmone, A.A. & Nava, S. (2010) Hosts of Amblyomma dissimile Koch, 1844 and Amblyomma rotundatum Koch, 1844 (Acari: Ixodidae). Zootaxa 2541, 2749.CrossRefGoogle Scholar
Guglielmone, A.A. & Nava, S. (2011) Rodents of the subfamily Sigmodontinae (Myomorpha: Cricetidae) as hosts for South American hard ticks (Acari: Ixodidae) with hypothesis on life history. Zootaxa 2904, 4565.Google Scholar
Guglielmone, A.A., Mangold, A.J. & Garcia, M.D. (1991) The life cycle of Amblyomma parvum Aragao, 1908 (Acari: Ixodidae) under laboratory conditions. Experimental and Applied Acarology 13, 129136.Google Scholar
Guglielmone, A.A., Mangold, A.J., Luciani, C.E. & Viñabal, A.E. (2000) Amblyomma tigrinum (Acari: Ixodidae) in relation to phytogeography of central-northern Argentina with note on hosts and seasonal distribution. Experimental and Applied Acarology 24, 983989.Google Scholar
Guglielmone, A.A., Robbins, R.G., Apanaskevich, D.A., Petney, T.A., Estrada-Peña, A., Horak, I.G., Shao, R. & Barker, S.C. (2010) The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid names. Zootaxa 2528, 128.Google Scholar
Hoberg, E.P. & Brooks, D.R. (2008) A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host–parasite systems. Journal of Biogeography 35, 15331550.Google Scholar
Hoogstraal, H. (1978) Biology of ticks. pp. 314 in Tick borne diseases and their vectors: Proceedings of the International Conference of Edinburgh, 1978, University of Edinburgh, September 1976, Edinburgh, UK.Google Scholar
Hoogstraal, H. & Aeschlimann, A. (1982) Tick-host specificity. Bulletin de la Société Entomologique Suisse 55, 532.Google Scholar
Hoogstraal, H. & Kim, K.C. (1985) Tick and mammal coevolution, with emphasis on Haemaphysalis. pp. 505568in Kim, K.C. (Ed.) Coevolution of Parasitic Arthropods and Mammals. London, UK, London University Press.Google Scholar
Jackson, J.A. & Tinsley, R.C. (2005) Geographic and within-population structure in variable resistance to parasite species and strains in a vertebrate host. International Journal for Parasitology 35, 2937.Google Scholar
Janzen, D.H. (1985) On ecological fitting. Oikos 45, 308310.Google Scholar
Kaltz, O. & Shykoff, J.A. (1998) Local adaptation in host-parasite systems. Heredity 81, 361370.Google Scholar
Kelly, D.W., Paterson, R.A., Townsend, C.R., Poulin, R. & Tompkins, D.M. (2009) Parasite spillback: a neglected concept in invasión ecology? Ecology 90, 20472056.Google Scholar
Kethley, J.B. & Johnston, D.E. (1975) Resource tracking patterns in bird and mammal ectoparasites. Miscellaneous Publications of the Entomological Society of America 9, 231236.Google Scholar
Klompen, J.S.H., Black, W.C., Keirans, J.E. & Oliver, J.H. (1996) Evolution of ticks. Annual Review of Entomology 41, 141161.CrossRefGoogle ScholarPubMed
Krasnov, B.R., Poulin, R., Shenbrot, G.I., Mouillot, D. & Khokhlova, I.S. (2005) Host specificity and geographic range in haematophagous ectoparasites. Oikos 108, 449456.Google Scholar
Krasnov, B.R., Korine, C., Burdelova, N.V., Khokhlova, I.S. & Pinshow, B. (2007) Between-host phylogenetic distance and feeding efficiency in hematophagous ectoparasites: rodent fleas and a bat host. Parasitology Research 101, 365371.Google Scholar
Krasnov, B.R., Korallo-Vinarskaya, N.P., Vinarski, M.V., Shenbrot, G.I., Mouillot, D. & Poulin, R. (2008) Searching for general patterns in parasite ecology: host identity versus environmental influence on gamasid mite assemblages in small mammals. Parasitology 135, 229242.Google Scholar
Krasnov, B.R., Mouillot, D., Shenbrot, G.I., Khokhlova, I.S., Vinarski, M.V., Korallo-Vinarskaya, N.P. & Poulin, R. (2010) Similarity in ectoparasites faunas of Palaeartic rodents as a function of host phylogenetic, geographic or environmental distances: which matters the most? International Journal for Parasitology 40, 807817.Google Scholar
Krasnov, B.R., Mouillot, D., Shenbrot, G.I., Khokhlova, I.S. & Poulin, R. (2011) Beta specificity: the turnover of host species in space and another way to measure host specificity. International Journal for Parasitology 41, 3341.Google Scholar
Labruna, M.B., Cerqueira Leite, R., Faccini, J.R.L. & Ferreira, F. (2000) Life cycle of the tick Haemaphysalis leporis-palustris (Acari: Ixodidae) under laboratory conditions. Experimental and Applied Acarology 24, 683694.Google Scholar
Labruna, M.B., Souza, S.L.P., Menezes, A.C., Horta, M.C., Pinter, A. & Gennari, S.M. (2002) Life cycle and host specificity of Amblyomma tigrinum (Acari: Ixodidae) under laboratory conditions. Experimental and Applied Acarology 24, 115125.Google Scholar
Labruna, M.B., Fugisaki, E.Y.M., Pinter, A., Duarte, J.M.B. & Szabó, M.J.P. (2003) Life cycle and host specificity of Amblyomma triste (Acari: Ixodidae) under laboratory conditions. Experimental and Applied Acarology 30, 305316.Google Scholar
Labruna, M.B., Soares, J.F., Martins, T.F., Soares, H.S. & Cabrera, R.R. (2011) Cross-mating experiments with geographically different populations of Amblyomma cajennense (Acari: Ixodidae). Experimental and Applied Acarology 54, 4149.Google Scholar
Mastropaolo, M., Nava, S., Guglielmone, A.A. & Mangold, A.J. (2011) Biological differences between two allopatric populations of Amblyomma cajennense (Acari: Ixodidae) in Argentina. Experimental and Applied Acarology 53, 371375.Google Scholar
Morgan, A.D., Gandon, S. & Buckling, A. (2005) The effect of migration on local adaptation in a coevolving host-parasite system. Nature 437, 253256.Google Scholar
Nava, S., Mangold, A.J. & Guglielmone, A.A. (2008) Aspects of the life cycle of Amblyomma parvum (Acari: Ixodidae) under natural conditions. Veterinary Parasitology 156, 270276.Google Scholar
Nava, S., Estrada-Peña, A., Mangold, A.J. & Guglielmone, A.A. (2009) Ecology of Amblyomma neumanni (Acari: Ixodidae). Acta Tropica 111, 226236.Google Scholar
Nava, S., Mangold, A.J., Mastropaolo, M., Venzal, J.M., Fracassi, N. & Guglielmone, A.A. (2011) Seasonal dynamics and hosts of Amblyomma triste (Acari: Ixodidae) in Argentina. Veterinary Parasitology 181, 301308.CrossRefGoogle ScholarPubMed
Olegário, M.M., Gerardi, M., Tsuruta, S.A. & Szabó, M.P. (2011) The life cycle of the tick Amblyomma parvum Aragao, 1908 (Acari: Ixodidae) and suitability of domestic hosts under laboratory conditions. Veterinary Parasitology 179, 203208.Google Scholar
Pardiñas, U.F.J., Teta, P. & D'Elia, G. (2010) Roedores sigmodontinos de la región pampeana: historia evolutiva, sistemática y taxonomía. pp. 936in Polop, J.J. & Busch, M. (Eds) Biología y Ecología de Pequeños Roedores en la Región Pampeana Argentina: Enfoques y Perspectivas. Córdoba, Argentina, Editorial de la Universidad Nacional de Córdoba.Google Scholar
Pinter, A., Dias, R.A., Gennari, S.M. & Labruna, M.B. (2004) Study of the seasonal dynamics, life cycle, and host specificity of Amblyomma aureolatum (Acari: Ixodidae). Journal of Medical Entomology 41, 321332.Google Scholar
Poulin, R. (1992) Determinants of host-specificity in parasites of freshwater fishes. International Journal for Parasitology 22, 753758.Google Scholar
Poulin, R. (2005) Relative infection levels and taxonomic distances among the host species used by a parasite: insights into parasite specialization. Parasitology 130, 109115.Google Scholar
Poulin, R. (2007) Evolutionary Ecology of Parasites. 2nd edn.Princenton, NJ, USA, Princeton University Press.Google Scholar
Poulin, R. & Mouillot, D. (2005) Combining phylogenetic and ecological information into a new index of host specificity. Journal of Parasitology 91, 511514.Google Scholar
Poulin, R., Krasnov, B.R., & Morand, S. (2006) Patterns of host specificity in parasites exploiting small mammals. pp. 233256in Morand, S., Krasnov, B.R. & Poulin, R. (Eds) Micromammals & Macroparasites: From Evolutionary Ecology to Management. Tokyo, Japan, Springer-Verlag.Google Scholar
Sanches, G.S., Bechara, G.H., Garcia, M.V., Labruna, M.B. & Szabó, M.P.J. (2008) Biological aspects of Amblyomma brasiliense (Acari: Ixodidae) under laboratory conditions. Experimental and Applied Acarology 44, 4348.CrossRefGoogle ScholarPubMed
Schumaker, T.T.S., Labruna, M.B., Dos Santos, A.I., Soares Clerici, P.T. (2000) Life cycle of Ixodes (Ixodes) loricatus under laboratory conditions. Journal of Medical Entomology 37, 714720.Google Scholar
Steiner, C., Tilak, M., Douzery, E.J.P. & Catzeflis, F.M. (2005) New DNA data from a transthyretin nuclear intron suggest an Oligocene to Miocene diversification of living South America opossums (Marsupialia: Didelphidae). Molecular Phylogenetics and Evolution 35, 363379.Google Scholar
Szabó, M.P.J., Pereira, L.F., Castro, M.B., Garcia, M.V., Sanches, G.S. & Labruna, M.B. (2009) Biology and life cycle of Amblyomma incisum (Acari: Ixodidae). Experimental and Applied Acarology 48, 263271.Google Scholar
Voss, R.S. & Jansa, S.A. (2009) Phylogenetic relationships and classification of didelphid marsupials, an extant radiation of New World metatherian mammals. Bulletin of the American Museum of Natural History 322, 1177.Google Scholar
Walther, B.A. & Morand, S. (1998) Comparative performance of species richness estimation methods. Parasitology 116, 393405.Google Scholar
Walther, B.A., Cotgreave, P., Price, R.D., Gregory, R.D. & Clayton, D.H. (1995) Sampling effort and parasite species richness. Parasitology Today 11, 306310.Google Scholar
Weksler, M., Percequillo, A.R. & Voss, R.S. (2006) Ten new genera of oryzomyne rodents (Cricetidae: Sigmodontinae). American Museum Novitates 3537, 129.Google Scholar
Wilson, D.E. & Reeder, D.M. (2005) Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd edn.Baltimore, MD, USA, Johns Hopkins University Press.Google Scholar
Wolinska, J. & King, K.C. (2009) Environment can alter selection in host-parasite interactions. Trends in Parasitology 25, 236244.Google Scholar
File 59.4 KB