Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T17:21:31.838Z Has data issue: false hasContentIssue false

Identification of odorant-binding protein genes in Galeruca daurica (Coleoptera: Chrysomelidae) and analysis of their expression profiles

Published online by Cambridge University Press:  20 April 2017

L. Li
Affiliation:
Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
Y.-T. Zhou
Affiliation:
Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
Y. Tan
Affiliation:
Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
X.-R. Zhou
Affiliation:
Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
B.-P. Pang*
Affiliation:
Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
*
*Author for correspondence Phone: 86-471-4318472 Fax: 86-471-4318472 E-mail: [email protected]

Abstract

Odorant-binding proteins (OBPs) play a fundamental role in insect olfaction. In recent years, Galeruca daurica (Joannis) (Coleoptera: Chrysomelidae) has become one of the most important insect pests in the Inner Mongolian grasslands of China. This pest only feeds on the species of Allium plants, implying the central role of olfaction in its search for specific host plants. However, the olfaction-related proteins have not been investigated in this beetle. In this study, we identified 29 putative OBP genes, namely GdauOBP1–29, from the transcriptome database of G. daurica assembled in our laboratory by using RNA-Seq. All 29 genes had the full-length open reading frames except GdauOBP29, encoding proteins in length from 119 to 202 amino acids with their predicted molecular weights from 12 to 22 kDa with isoelectric points from 3.88 to 8.84. Predicted signal peptides consisting of 15–22 amino acid residues were found in all except GdauOBP6, GdauOBP13 and GdauOBP29. The amino acid sequence identity between the 29 OBPs ranged 8.33–71.83%. GdauOBP1–12 belongs to the Classic OBPs, while the others belong with the Minus-C OBPs. Phylogenetic analysis indicated that GdauOBPs are the closest to CbowOBPs from Colaphellus bowringi. RT-PCR and qRT-PCR analyses showed that all GdauOBPs were expressed in adult antennae, 11 of which with significant differences in their expression levels between males and females. Most GdauOBPs were also expressed in adult heads (without antennae), thoraxes, abdomens, legs and wings. Moreover, the expression levels of the GdauOBPs varied during the different development stages of G. daurica with most GdauOBPs expressed highly in the adult antennae but scarcely in eggs and pupae. These results provide insights for further research on the molecular mechanisms of chemical communications in G. daurica.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, M.N., Grosse-Wilde, E., Keeling, C., Bengtsson, J.M., Yuen, M.M.S., Li, M., Hillbur, Y., Bohlmann, J., Hansson, B.S. & Schlyter, F. (2013) Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14, 116. DOI: 10.1186/1471-2164-14-198.CrossRefGoogle ScholarPubMed
Antony, B., Soffan, A., Jakše, J., Abdelazim, M.M., Aldosari, S.A., Aldawood, A.S. & Pain, A. (2016) Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics 17, 69. DOI: 10.1186/s12864-016-2362-6.Google Scholar
Chang, J., Zhou, X.R., Li, H.P. & Pang, B.P. (2015) Synergistic effects of Metarhizium anisopliae mixed with three pesticides against Galeruca daurica . Chinese Journal of Pesticide Science 17, 5459. (in Chinese with English abstract)Google Scholar
Dippel, S., Oberhofer, G., Kahnt, J., Gerischer, L., Opitz, L., Schachtner, J., Stanke, M., Schütz, S., Wimmer, E.A. & Angeli, S. (2014) Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics 15(1), 1141.Google Scholar
Gao, J.C., Zhou, X.R., Pang, B.P., Bao, X. & Luo, J.P. (2015) Effects of low temperature on the survivorship and development of overwintering eggs of Galeruca daurica (Coleoptera: Chrysomelidae). Acta Entomologica Sinica 58, 881886. (in Chinese with English abstract)Google Scholar
Goldman-Huertas, B., Mitchell, R.F., Lapoint, R.T., Faucher, C.P., Hildebrand, J.G. & Whiteman, N.K. (2015) Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proceedings of the National Academy of Science of the USA 112, 30263031. DOI: 10.1073/pnas.1424656112.CrossRefGoogle ScholarPubMed
Gong, Z.J., Miao, J., Duan, Y., Jiang, Y.L., Li, T. & Wu, Y.Q. (2014) Identification and expression profile analysis of putative odorant-binding proteins in Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae). Biochemical and Biophysical Research Communications 444, 164170.Google Scholar
Gu, X.C., Zhang, Y.N., Kang, K., Dong, S.L. & Zhang, L.W. (2015) Antennal transcriptome analysis of odorant reception genes in the Red Turpentine Beetle (RTB), Dendroctonus valens . PLoS ONE 10(5), e0125159.Google Scholar
Hao, X., Zhou, X.R., Pang, B.P., Zhang, Z.R. & Ma, C.Y. (2014) Effects of host plants on feeding amount, growth and development of Galeruca daurica (Joannis) larvae (Coleoptera: Chrysomelidae). Acta Agrestia Sinica 22, 854858. (in Chinese with English abstract)Google Scholar
Hao, X., Zhou, X.R., Pang, B.P., Zhang, Z.R. & Bao, X. (2015) Morphological and biological characteristics of Galeruca daurica Joannis. Acta Agrestia Sinica 23, 11061108. (in Chinese with English abstract)Google Scholar
Jeong, Y.T., Shim, J., Oh, S.R., Yoon, H.I., Kim, C.H., Moon, S.J. et al. (2013) An odorant-binding protein required for suppression of sweet taste by bitter chemicals. Neuron 79, 725737.Google Scholar
Jia, X.J., Hao, S.D., Du, Y.L., Zhang, M.Z., Qin, X.C., Wang, J.Z., Wang, H.X. & Ji, W.R. (2015) cDNA cloning, expression profiling and binding affinity assay of the pheromone binding protein Cpun-PBP1 in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae). Acta Entomologica Sinica 58, 11671176. (in Chinese with English abstract)Google Scholar
Ju, Q., Li, X., Jiang, X.J. & Qu, M.J. (2014) Transcriptome and tissue-specific expression analysis of OBP and CSP genes in the dark black chafer. Archives of Insect Biochemistry and Physiology 87, 177200. DOI: 10.1136/jcp.21.4.492.Google Scholar
Laughlin, J.D., Ha, T.S., Jones, D.N. & Smith, D.P. (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133, 12551265.Google Scholar
Lavagnino, N., Serra, F., Arbiza, L., Dopazo, H. & Hasson, E. (2012) Evolutionary Genomics of genes involved in olfactory behavior in the Drosophila melanogaster species group. Evolutionary Bioinformatics Online 8, 89104. DOI: 10.4137/EBO.S8484.Google Scholar
Li, H., Zhou, X.R., Pang, B.P. & Chang, J. (2014) Supercooling capacity and cold hardiness of Galeruca daurica (Coleoptera: Chrysomelidae) . Acta Entomologica Sinica 57, 212217. (in Chinese with English abstract)Google Scholar
Li, H., Zhou, X.R., Pang, B.P., Zhang, Z.R., Chang, J. & Shan, Y.M. (2015 a) Effects of low temperature stress on the supercooling capacity and development of Galeruca daurica (Joannis) larvae (Coleoptera: Chrysomelidae). Chinese Journal of Applied Entomology 52, 434439. (in Chinese with English abstract)Google Scholar
Li, X.M., Zhu, X.Y., Wang, Z.Q., Wang, Y., He, P., Chen, G., Sun, L., Deng, D.G. & Zhang, Y.N. (2015 b) Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis. BMC Genomics 16, 1028. DOI: 10.1186/s12864-015-2236-3.Google Scholar
Livak, K.J. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quatitative PCR and the 2−ΔΔCT method. Methods 25, 402408.Google Scholar
Ma, C.Y., Wei, J., Li, H.S. & Cao, Y. (2012) Preliminary studies on leaf beetle, Galeruca daurica on grassland. Chinese Journal of Applied Entomology 49, 766769. (in Chinese with English abstract)Google Scholar
Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T. & Fuyama, Y. (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia . PLoS Biology 5, e118.CrossRefGoogle ScholarPubMed
Pan, C., Zhang, Y.H., Xie, J.Q., Li, H.S. & Pang, H. (2016) Cloning and spatio-temporal expression of the odorant binding protein ComOBP1 gene from Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae). Journal of Environmental Entomology 38, 249260. (in Chinese with English abstract)Google Scholar
Poivet, E., Gallot, A., Montagne, N., Glaser, N., Legeai, F. & Jacquin-Joly, E. (2013) A comparison of the olfactory gene repertoires of adults and larvae in the noctuid moth Spodoptera littoralis. PLoS ONE 8(4), e60263.Google Scholar
Qin, J.M., Cai, L.J., Zheng, L.S., Cheng, X.J. & You, M.S. (2016) Identification and ligand binding characteristics of antennal binding protein PxyIOBP31 in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Acta Entomologica Sinica 59, 812822. (in Chinese with English abstract)Google Scholar
Shanbhag, S.R., Hekmat-Scafe, D., Kim, M.-S., Park, S.-K., Carlson, J.R., Pikielny, C., Smith, D.P. & Steinbrecht, R.A. (2001) Expression mosaic of odorant-binding proteins in Drosophila olfactory organs. Microscopy Research and Technique 55, 297306.CrossRefGoogle ScholarPubMed
Sparks, J.T., Bohbot, J.D. & Dickens, J.C. (2014) The genetics of chemoreception in the labella and tarsi of Aedes aegypti . Insect Biochemistry and Molecular Biology 48, 816.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Tan, Y., Zhou, X.R. & Pang, B.P. (2016) Reference gene selection and evaluation for expression analysis using qRT-PCR in Galeruca daurica (Joannis). Bulletin of Entomological Research doi: 10.1017/S0007485316000948.Google ScholarPubMed
Vogt, R.G. (2003) Biochemical diversity of odor detection: OBPs, ODEs & SNMPs. pp. 391446 in Blomquist, G.J. & Vogt, R.G. (Eds) Insect Pheromone Biochemistry and Molecular Biology, the Biosynthesis and Detection of Pheromones and Plant Volatiles. California, Elsevier.CrossRefGoogle Scholar
Vogt, R.G. (2005) Molecular basis of pheromone detection in insects. pp. 753804 in Gilbert, L.I., Latro, K. & Gill, S. (Eds) Comprehensive Molecular Insect Science. London, UK, Elsevier.Google Scholar
Vogt, R.G., Rogers, M.E., Dickens, J.C. & Callahan, F.E. (1999) Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chemical Senses 24, 481495.Google Scholar
Wang, J., Li, D.Z., Min, S.F., Mi, F., Zhou, S.S. & Wang, M.Q. (2014) Analysis of chemosensory gene families in the beetle Monochamus alternatus and its parasitoid Dastarcus helophoroides . Comparative Biochemistry and Physiology 11, 18.Google Scholar
Wang, Y.L., Chen, Q., Zhao, H.B. & Ren, B.Z. (2016) Identification and comparison of candidate olfactory genes in the olfactory and non-olfactory organs of Elm pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) based on transcriptome analysis. PLoS ONE 11, 128. DOI: 10.1371/journal.pone.0147144.Google Scholar
Yang, X.K., Huang, D.C., Ge, S.Q., Bai, M. & Zhang, R.Z. (2010) One million mu of meadow in Inner Mongolia suffer from the harm of breaking out of Galeruca daurica (Joannis). Chinese Bulletin of Entomology 47, 812. (in Chinese with English abstract)Google Scholar
Zhang, Y.N., Jin, J.Y., Jin, R., Xia, Y.H., Zhou, J.J., Deng, J.Y. & Dong, S.L. (2013) Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker). PLoS ONE 8, e69715. DOI: 10.1371/journal.pone.0069715 Google Scholar
Zhang, P.F., Zhou, X.R., Pang, B.P., Chang, J., Shan, Y.M. & Zhang, Z.R. (2015) Microsatellite marker analysis of the genetic diversity of Galeruca daurica (Coleoptera: Chrysomelidae) populations from Inner Mongolia. Acta Entomologica Sinica 58, 10051011. (in Chinese with English abstract)Google Scholar
Zheng, W.W., Peng, W., Zhu, C.P., Zhang, Q., Saccone, G. & Zhang, H.Y. (2013) Identification and expression profile analysis of odorant binding proteins in the oriental fruit fly Bactrocera dorsalis . International Journal of Molecular Sciences 14, 1493614949.Google Scholar
Zhou, X., Slone, J.D., Rokas, A., Berger, S.L., Liebig, J., Ray, A., Reinberg, D. & Zwiebel, L.J. (2012) Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. Plos Genetics 8, e1002930. DOI: 10.1371/journal.pgen.1002930 Google Scholar
Zhou, X.R., Gao, J.C. & Pang, B.P. (2016 a) Effects of temperature on the termination of egg diapause and post-diapause embryonic development of Galeruca daurica (Coleoptera: Chrysomelidae). Environmental Entomology 45, 10761080.CrossRefGoogle ScholarPubMed
Zhou, X.R., Han, F.Y., Hao, X., Pang, B.P., Yang, X.D. & Zhang, P. (2016 b) Effects of alternating and constant temperatures on the developmental rate of Galeruca daurica (Coleoptera: Chrysomelidae). Journal of Environmental Entomology 38, 931935. (in Chinese with English abstract)Google Scholar
Zhou, X., Han, H., Pang, B. & Zhang, P. (2016 c) The complete mitochondrial genome of Galeruca daurica (Joannis) (Coleoptera: Chrysomelidae). Mitochondrial DNA Part A 27, 28912892.Google Scholar
Zhu, J.Y., Zhang, L.F., Ze, S.Z., Wang, D.W. & Yang, B. (2013) Identification and tissue distribution of odorant binding protein genes in the beet armyworm, Spodoptera exigua . Journal of Insect Physiology 59, 722728.Google Scholar
Zwiebel, L.J. (2003) The biochemistry of odor detection and its future prospects. pp. 371390 in Blomquist, G.J. & Vogt, R.G. (Eds) Insect Pheromone Biochemistry and Molecular Biology, the Biosynthesis and Detection of Pheromones and Plant Volatiles. California, Elsevier.Google Scholar