Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T11:44:17.091Z Has data issue: false hasContentIssue false

Habitat management of organic vineyard in Northern Italy: the role of cover plants management on arthropod functional biodiversity

Published online by Cambridge University Press:  17 June 2016

G. Burgio
Affiliation:
Dipartimento di Scienze Agrarie, DipSA, Alma Mater Studiorum Università di Bologna, viale Fanin 42, 40127, BO, Italy
E. Marchesini
Affiliation:
AGREA s.r.l., Via Garibaldi 5/16, 37057, S. Giovanni Lupatoto (VR) – Italy
N. Reggiani
Affiliation:
Consorzio Fitosanitario di Modena, via Santi 14, MO, Italy
G. Montepaone
Affiliation:
Consorzio Fitosanitario di Modena, via Santi 14, MO, Italy
P. Schiatti
Affiliation:
Prober, piazza dei Martiri 1, 40121, Bologna
D. Sommaggio*
Affiliation:
Dipartimento di Scienze Agrarie, DipSA, Alma Mater Studiorum Università di Bologna, viale Fanin 42, 40127, BO, Italy
*
*Author for correspondence Phone: +393459425338 Fax: +390512096281 E-mail: [email protected]

Abstract

The effect of cover plants on arthropod functional biodiversity was investigated in a vineyard in Northern Italy, through a 3-year field experiment. The following six ground cover plants were tested: Sweet Alyssum; Phacelia; Buckwheat; Faba Bean; Vetch and Oat; control. Arthropods were sampled using different techniques, including collection of leaves, vacuum sampling and sweeping net. Ground cover plant management significantly affected arthropod fauna, including beneficial groups providing ecosystem services like biological control against pests. Many beneficial groups were attracted by ground cover treatments in comparison with control, showing an aggregative numerical response in the plots managed with some of the selected plant species. Alyssum, Buckwheat and ‘Vetch and Oat’ mixture showed attractiveness on some Hymenoptera parasitoid families, which represented 72.3% of the insects collected by sweeping net and 45.7 by vacuum sampling. Phytoseiidae mites showed a significant increase on leaves of the vineyard plots managed with ground covers, in comparison with control, although they did not show any difference among the treatments. In general, the tested ground cover treatments did not increase dangerous Homoptera populations in comparison with control, with the exception of Alyssum. The potential of ground cover plant management in Italian vineyards is discussed: the overall lack of potential negative effects of the plants tested, combined with an aggregative numerical response for many beneficials, seems to show a potential for their use in Northern Italy vineyards.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alma, A. (2004) The genus Scaphoideus in the world. The diffusion of S. titanus in Europe. pp. 3–5 in 3rd European Hemiptera Congress. 8–11 June 2004, St. Petersburg.Google Scholar
Altieri, M.A., Nicholls, C.I., Ponti, L. & York, A. (2005) Designing biodiverse pest resilient vineyards through habitat management. Practical Winery and Vineyard May–June, 16.Google Scholar
Altieri, M.A., Nicholls, C.I., Wilson, H. & Miles, A. (2010) Habitat Management in Vineyards. A Growers Manual for Enhancing Natural Enemies. Berkeley, USA, Laboratory of Agroecology, College of Natural Resources University of California.Google Scholar
Araj, S.A., Wratten, S.D., Lister, A.J. & Buckley, H.L. (2006) Floral nectar affects longevity of the aphid parasitoid Aphidius ervi and its hyperparasitoid Dendrocerus aphidum . New Zealand Plant Protection 59, 178183.Google Scholar
Barbosa, P. (1998) Conservation Biological Control. San Diego, California, Academic Press.CrossRefGoogle Scholar
Begum, M., Gurr, G.M., Wratten, S.D., Hedberg, P. & Nicol, H.I. (2006) Using selective food plants to maximize biological control of vineyard pests. Journal of Applied Ecology 43, 547554.Google Scholar
Belcari, A. & Raspi, A. (1989) Un nuovo predatore di Lobesia botrana (Denn & Schiff.) (Lepidoptera Tortricidae): Xanthandrus comtus (Harr.) (Diptera Syrphidae). Bollettino di Zoologia Agraria e Bachicoltura, Ser. II 21, 185192.Google Scholar
Belz, E., Kölliker, M. & Balmer, O. (2013) Olfactory attractiveness of flowering plants to the parasitoid Microplitis mediator: potential implications for biological control. Biocontrol 58, 163173.Google Scholar
Berndt, L.A., Wratten, S.D. & Scarratt, S.L. (2006) The influence of floral resource subsidies on parasitism rates of leafrollers (Lepidoptera: Tortricidae) in New Zealand vineyards. Biological Control 37, 5055.Google Scholar
Boivin, G., Hance, T. & Brodeur, J. (2012) Aphids parasitoids in biological control. Canadian Journal of Plant Science 92(1), 112.Google Scholar
Bosco, D., Marzachì, C. & Alma, A. (2005) Grapevine yellows vectors: a threat for viticultural areas worldwide. pp. 36–37 in 12th Internationl Auchenorryncha Congress. 7–12 August 2005, Berkeley, California.Google Scholar
Carreck, N.L. & Williams, I.H. (1997) Observations on two commercial flower mixtures as food sources for beneficial insects. Journal of Agricultural Science 128, 397403.Google Scholar
Cottrell, T.E. & Yeargan, K.V. (1998) Effect of pollen on Coleomegilla maculata (Coleoptera: Coccinellidae) population density, predation, and cannibalism. Environmental Entomology 27, 14021410.Google Scholar
Cowgill, S.E., Wratten, S.D. & Sotherton, N.W. (1993) The selective use of floral resources by the hoverfly Episyrphus balteatus (Diptera: Syrphidae) on farmland. Annals of Applied Biology 122, 223231.Google Scholar
Delucchi, V. (1997) Una nuova frontiera: la gestione ambientale come prevenzione. pp. 3537 in Prota, R. & Pantaleoni, R.A. (Eds) Atti della Giornata sulle strategie bio-ecologiche di lotta contro gli organismi nocivi . Sassari, Italy, CNR.Google Scholar
Duso, C., Torresan, L. & Vettorazzo, E. (1993) La vegetazione spontanea come riserva di ausiliari: considerazioni sulla diffusione degli acari Fitoseidi (Acari: Phytoseiidae) in un vigneto e sulle piante spontanee contigue. Bollettino di Zoologia Agraria e Bachicoltura 25, 183203.Google Scholar
Duso, C., Fontana, P. & Malagnini, V. (2004) Diversity and abundance of phytoseiid mites (Acari: Phytoseiidae) in vineyards and the surrounding vegetation in northeastern Italy. Acarologia 44, 3147.Google Scholar
Duso, C., Pozzebon, A., Kreiter, S., Tixier, M.S. & Candolfi, M.P. (2012) Management of phytophagous mites in European vineyards. pp. 191217 in Bostanian, N.J., Vincent, C. & Isaacs, R. (Eds) Arthropod Management in Vineyards: Pests, Approaches, and Future Directions . Dordrecht, The Netherlands, Springer.Google Scholar
Freeman Long, R., Corbett, A., Lamb, C., Reberg-Horton, C., Chandler, J. & Stimmann, M. (1998) Beneficial insects move from flowering plants to nearby crops. California Agriculture 52, 2326.CrossRefGoogle Scholar
Gliessman, S.R. (1998) Agroecology: Ecological Processes in Sustainable Agriculture. Boca Raton, CRC Press.Google Scholar
Gurr, G.M. & Wratten, S.D. (2000) Biological Control: Measures of Success. The Netherlands, Kluwer Academic Publishers.Google Scholar
Gurr, G.M., Wratten, S.D. & Altieri, M.A. (2004) Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods. Wallingford, UK, CABI Publishing.Google Scholar
Gurr, G.M., Wratten, S.D., Tylianakis, J., Kean, J. & Keller, M. (2005) Providing plant foods for natural enemies in farming systems: balancing practicalities and theory. pp. 326347 in Wäckers, F.L., Van Rijn, P.C.J. & Bruin, J. (Eds) Plant-Provided Food for Carnivorous Insects: a Protective Mutualism and its Applications . Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Gurr, G.M., Scarratt, S., Jacometti, M.A. & Wratten, S. (2007) Management of pests and diseases in New Zealand and Australian vineyards. pp. 392398 in Vincent, C., Goettel, M.S. & Lazarovits, G. (Eds) Biological Control: a Global Perspective . Oxfordshire, CAB International.Google Scholar
Hickman, J.M. & Wratten, S.D. (1996) Use of Phacelia tanacetifolia strips to enhance biological control of aphids by hoverfly larvae in cereal fields. Journal of Economic Entomology 89, 832840.Google Scholar
Hogg, B.N., Bugg, R.L. & Daane, K.M. (2011) Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biological Control 56, 7684.Google Scholar
Ioriatti, C., Bagnoli, B., Lucchi, A. & Veronelli, V. (2004) Vine moths control by mating disruption in Italy: results ad future prospects. Redia 87, 117128.Google Scholar
Ioriatti, C., Lucchi, A. & Bagnoli, B. (2008) Grape areawide pest management in Italy. pp. 208225 in Koul, O., Cuperus, G.W., Elliot, N. (Eds) Areawide Pest Management: Theory and Implementation . Wallingford, UK, CAB International.Google Scholar
Isaia, M., Bona, F. & Badino, G. (2006) Influence of landscape diversity and agricultural practices on spider assemblage in Italian vineyards of Langa Astigiana (Northwest Italy). Environmental Entomology 35, 297307.Google Scholar
Kehinde, T. & Samways, M.J. (2014) Insect–flower interactions: network structure in organic versus conventional vineyards. Animal Conservation 17(5), 401409.Google Scholar
Landis, D.A., Wratten, S.D. & Gurr, G.M. (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45, 175201.Google Scholar
Loni, A. & Lucchi, A. (2014) Hymenoptera parasitoid, a suitable biodiversity resource for vineyard environmental discrimination. Journal of Agricultural Science 6(12), 36106.Google Scholar
Lovei, G.L., McDougall, D., Bramley, G., Hodgson, D.J. & Wratten, S. D. (1992) Floral resources for natural enemies: the effect of Phacelia tanacetifolia (Hydrophyllaceae) on within-field distribution of hoverflies (Diptera: Syrphidae). pp. 60–61. in Proceedings of the 45th New Zealand Plant Protection Conference.Google Scholar
Lu, Z.X., Zhu, P.-Y., Gurr, M.G., Zheng, X.S., Read, D.M.Y., Heong, K.-L., Yang, Y.-J. & Xu, H.-X. (2014) Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: prospects for enhanced use in agriculture. Insect Science 21, 112.Google Scholar
Lundgren, J.G. (2009) Relationships of Natural Enemies and Non-prey Foods . Dordrecht, The Netherlands, Springer.CrossRefGoogle Scholar
Marchesini, E. (1989) Effetti collaterali di antiperonosporici diversi su Kampimodromus aberrans Oud. Informatore Fitopatologico 55(12), 111114.Google Scholar
Marchesini, E. & Dalla Montà, L. (1994) Observations on natural enemies of Lobesia botrana (Den. & Schiff.) (Lepidoptera, Tortricidae) in Venetian vineyards. Bollettino di Zoologia Agraria e Bachicoltura, Series II 26(2), 201230.Google Scholar
Marchesini, E. & Ivancich Gambaro, P. (1989) Indagini sui fitoseidi nei vigneti della Valpolicella in rapporto ai programmi di difesa. Due specie a confronto: Amblyseius aberrans (Oud.) e Typhlodromus pyri Scheuten. Redia 71(2), 609621.Google Scholar
Minuz, L.R., Isidoro, N., Casavecchia, S., Burgio, G. & Riolo, P. (2013) Sex-dispersal differences of four phloem-feeding vectors and their relationship to wild-plant abundance in vineyard agroecosystems. Journal of Economic Entomology 106(6), 22962309.Google Scholar
Moleas, T. (2003) The use of Phacelia tanacetifolia (Muntz, 1973) (Solanales: Hydrophyllaceae) to control Frankliniella occidentalis (Pergande) on table grapes. IOBC/wprs Bulletin 26, 265268.Google Scholar
Nalepa, C.A., Bambara, S.B. & Burroughs, A.M. (1992) Pollen and nectar feeding by Chilocorus kuwanae (Silvestri) (Coleoptera: Coccinellidae). Proceedings of Entomological Society of Washington 94, 596597.Google Scholar
Pemberton, R.W. & Vandenberg, N.J. (1993) Extrafloral nectar feeding by ladybird beetles (Coleoptera: Coccinellidae). Proceedings of Entomological Society of Washington 95, 139151.Google Scholar
Rebek, E.J., Sadof, C.S. & Hanks, L.M. (2005) Manipulating the abundance of natural enemies in ornamental landscapes with floral resource plants. Biological Control 33, 203216.CrossRefGoogle Scholar
Riolo, P., Landi, L., Nardi, S. & Isidoro, N. (2007) Relationships among Hyalesthes obsoletus, its herbaceous host plants and ‘bois noir’ phytoplasma strains in vineyard ecosystems in the Marche region (central-eastern Italy). Bulletin of Insectology 60, 353354.Google Scholar
Sigsgaard, L., Betzer, C., Naulin, C., Eilenberg, J., Enkegaard, A. & Kristensen, K. (2013) The effect of floral resources on parasitoid and host longevity: prospects for conservation biological control in strawberries. Journal of Insect Science 13, 117.Google Scholar
Simon, S., Bouvier, J.-C., Debras, J.F. & Sauphanor, B. (2010) Biodiversity and pest management in orchard systems. A review. Agronomy for Sustainable Development 30, 139152.Google Scholar
Sommaggio, D. & Burgio, G. (2014) The use of Syrphidae (Diptera) as functional bioindicator to compare vineyards with different managements. Bulletin of Insectology 67, 147156.Google Scholar
Starý, P. (1988) Aphidiidae. pp. 171184 in Minks, A.K. & Harrewijn, P. (Eds) Aphids: their Biology, Natural Enemies and Control , Vol. 2B. New York, Elsevier.Google Scholar
Steele, R.G.D., Torrie, J.H. & Dickey, D.A. (1997) Principles and Procedures of Statistical Analysis – A Biometrical Approach. New York, McGraw-Hill.Google Scholar
Thomson, L.J. & Hoffmann, A.A. (2007) Effects of ground cover (straw and compost) on the abundance of natural enemies and soil macro invertebrates in vineyards. Agriculture and Forestry Entomology 9, 173179.Google Scholar
Thomson, L.J. & Hoffmann, A.A. (2009) Vegetation increases the abundance of natural enemies in vineyards. Biological Control 49(3), 259269.Google Scholar
Thomson, L.J., McKenzie, J., Sharley, D.J., Nash, M.A., Tsitsilas, A. & Hoffmann, A.A. (2010) Effect of woody vegetation at the landscape scale on the abundance of natural enemies in Australian vineyards. Biological Control 54(3), 248254.Google Scholar
Varner, M., Mattedi, L. & Lucchi, A. (2015) Per una gestione sostenibile del problema Planococco. Il Corriere viticolo 18, 1520.Google Scholar
Viggiani, G. (2003) Functional biodiversity for the vineyard agroecosystem: aspects of the farm and landscape management in Southern Italy. IOBC/wprs Bulletin 26(4), 197202.Google Scholar
Völkl, W., Mackauer, M., Pell, J. & Brodeur, J. (2007) Predators, parasitoids and pathogens. pp. 187233 in van Emden, H. & Harrington, R. (Eds) Aphids as Crop Pests. Oxford, UK, CAB International.Google Scholar
Wäckers, F.L., van Rijn, P. & Bruin, J. (2005) Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and its Applications. Cambridge, Cambridge University Press.Google Scholar
Wäckers, F.L., Romeis, J. & van Rijn, P.C.J. (2007) Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annual Review of Entomology 52, 301323.Google Scholar
Weintraub, P.G. & Beanland, L. (2006) Insect vectors of phytoplasmas. Annual Review of Entomology 51, 91–11.Google Scholar
White, A.J., Wratten, S.D., Berry, N.A. & Weigmann, U. (1995) Habitat manipulation to enhance biological control of Brassica pests by hoverflies (Diptera: Syrphidae). Journal of Economic Entomology 88(5), 11711176.Google Scholar
Winkler, K.F.L., Wäckers, F.L., Valdivia, V., Larraz, V. & van Lenteren, J.C. (2003) Strategic use of nectar source to boost biological control. IOBC/WPRS Bulletin 26, 209214.Google Scholar
Wratten, S., Lavandero, B., Scarratt, S. & Vattala, D. (2003) Conservation biological control of insect pests at the landscape scale. IOBC/WPRS Bulletin 26, 215220.Google Scholar
Zar, J.H. (1984) Biostatistical Analisys. New Jersey, Prentice-Hall.Google Scholar