Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T10:09:42.994Z Has data issue: false hasContentIssue false

Genetic variability and demographic history of Heliothis virescens (Lepidoptera: Noctuidae) populations from Brazil inferred by mtDNA sequences

Published online by Cambridge University Press:  30 November 2011

K.C. Albernaz
Affiliation:
Departamento de Entomologia e Acarologia, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, ESALQ/USP, Avenida Pádua Dias, 11 Piracicaba, SP, 13418-900, Brazil
K.L. Silva-Brandão*
Affiliation:
Departamento de Entomologia e Acarologia, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, ESALQ/USP, Avenida Pádua Dias, 11 Piracicaba, SP, 13418-900, Brazil
P. Fresia
Affiliation:
Departamento de Entomologia e Acarologia, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, ESALQ/USP, Avenida Pádua Dias, 11 Piracicaba, SP, 13418-900, Brazil
F.L. Cônsoli
Affiliation:
Departamento de Entomologia e Acarologia, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, ESALQ/USP, Avenida Pádua Dias, 11 Piracicaba, SP, 13418-900, Brazil
C. Omoto
Affiliation:
Departamento de Entomologia e Acarologia, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, ESALQ/USP, Avenida Pádua Dias, 11 Piracicaba, SP, 13418-900, Brazil
*
*Author for correspondence Fax: +55 19 34294120 E-mail: [email protected]

Abstract

Intra- and inter-population genetic variability and the demographic history of Heliothis virescens (F.) populations were evaluated by using mtDNA markers (coxI, coxII and nad6) with samples from the major cotton- and soybean-producing regions in Brazil in the growing seasons 2007/08, 2008/09 and 2009/10. AMOVA indicated low and non-significant genetic structure, regardless of geographical scale, growing season or crop, with most of genetic variation occurring within populations. Clustering analyzes also indicated low genetic differentiation. The haplotype network obtained with combined datasets resulted in 35 haplotypes, with 28 exclusive occurrences, four of them sampled only from soybean fields. The minimum spanning network showed star-shaped structures typical of populations that underwent a recent demographic expansion. The recent expansion was supported by other demographic analyzes, such as the Bayesian skyline plot, the unimodal distribution of paired differences among mitochondrial sequences, and negative and significant values of neutrality tests for the Tajima's D and Fu's FS parameters. In addition, high values of haplotype diversity (Ĥ) and low values of nucleotide diversity (π), combined with a high number of low frequency haplotypes and values of θπW, suggested a recent demographic expansion of H. virescens populations in Brazil. This demographic event could be responsible for the low genetic structure currently found; however, haplotypes present uniquely at the same geographic regions and from one specific host plant suggest an initial differentiation among H. virescens populations within Brazil.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alstad, D.N. & Andow, D.A. (1995) Managing the evolution of insect resistance to transgenic plants. Science 268, 18941896.CrossRefGoogle ScholarPubMed
Avise, J.C. (2000) Phylogeography: The History and Formation of Species Cambridge, UK, Harvard University Press.CrossRefGoogle Scholar
Behere, G.T., Tay, W.T., Russell, D.A., Heckel, D.G., Appleton, B.R., Kranthi, K.R. & Batterham, P. (2007) Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evolutionary Biology 7 (doi:10.1186/1471-2148-1187-1117).CrossRefGoogle ScholarPubMed
Behura, S.K. (2006) Molecular marker systems in insects: current trends and future avenues. Molecular Ecology 15, 30873113.CrossRefGoogle ScholarPubMed
Brower, A.V.Z. (1994a) Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae). Molecular and Phylogenetics Evolution 3, 159174.CrossRefGoogle Scholar
Brower, A.V.Z. (1994b) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 64916495.CrossRefGoogle ScholarPubMed
Brower, A.V.Z., Freitas, A.V.L., Lee, M.M., Silva-Brandão, K.L., Whinnett, A. & Willmott, K.R. (2006) Phylogenetic relationships among the Ithomiini (Lepidoptera: Nymphalidae) inferred from one mitochondrial and two nuclear gene regions. Systematic Entomology 31, 288301.CrossRefGoogle Scholar
Cameron, S.L. & Whiting, M.F. (2008) The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408, 112123.CrossRefGoogle Scholar
Caprio, M.A. & Suckling, D.M. (2000) Simulating the impact of cross resistance between Bt toxins in transformed clover and apples in New Zealand. Journal of Economic Entomology 93, 173179.CrossRefGoogle ScholarPubMed
Caprio, M.A. & Tabashnik, B.E. (1992) Gene flow accelerates local adaptation among finite populations – simulating the evolution of insecticide resistance. Journal of Economic Entomology 85, 611620.CrossRefGoogle Scholar
Castelloe, J. & Templeton, A.R. (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Molecular and Phylogenetics Evolution 3, 102113.CrossRefGoogle ScholarPubMed
Caterino, M.S. & Sperling, F.A.H. (1999) Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Molecular Phylogenetics and Evolution 11, 122137.CrossRefGoogle ScholarPubMed
Caterino, M.S., Cho, S. & Sperling, F.A.H. (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annual Review of Entomology 45, 154.CrossRefGoogle ScholarPubMed
Caterino, M.S., Reed, R.D., Kuo, M.M. & Sperling, F.A.H. (2001) A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilionidae). Systematic Biology 50, 106127.CrossRefGoogle ScholarPubMed
Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 16571659.CrossRefGoogle ScholarPubMed
CONAB (2009/2010) Companhia Nacional de Desenvolvimento – Séries históricas relativas às safras 1976/77 a 2009/2010 de área plantada, produtividade e produção. Available online at http://www.conab.gov.br/ (accessed 26 July 2011).Google Scholar
Crandall, K.A. & Templeton, A.R. (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134, 959969.CrossRefGoogle ScholarPubMed
CTNBio (2011) COMISSÃO TÉCNICA NACIONAL DE BIOSSEGURANÇA – Liberação comercial da soja geneticamente modificada resistente a inseto e tolerante a herbicida soja MON 87701×89788: Parecer Técnico Prévio Conclusivo N° 2542/2010. Available online at http://www.ctnbio.gov.br/index.php/content/view/15348.html (accessed 20 January 2011).Google Scholar
Degrande, P.E. (1998) Guia prático de controle das pragas do algodoeiro. UFM, Dourados.Google Scholar
Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214221.CrossRefGoogle ScholarPubMed
Drummond, A.J., Rambaut, A., Shapiro, B. & Pybus, O.G. (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22, 11851192.CrossRefGoogle ScholarPubMed
Excoffier, L. & Lischer, H.E.L. (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.CrossRefGoogle ScholarPubMed
Excoffier, L., Smouse, P.E. & Quattro, J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491.CrossRefGoogle ScholarPubMed
Excoffier, L., Foll, M. & Petit, R.J. (2009) Genetic consequences of range expansions. Annual Review of Ecology Evolution and Systematics 40, 481501.CrossRefGoogle Scholar
Farrow, R.A. & Daly, J.C. (1987) Long-range movements as an adaptive strategy in the genus Heliothis (Lepidoptera: Noctuidae): a review of its occurrence and detection in four pest species. Australian Journal of Zoology 35, 124.CrossRefGoogle Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Fitt, G.P. (1989) The ecology of Heliothis species in relation to agroecosystems. Annual Review of Entomology 34, 1752.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Fu, Y.-X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915925.CrossRefGoogle ScholarPubMed
Fuentes-Contreras, E., Espinoza, J.L., Lavandero, B. & Ramirez, C.C. (2008) Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile. Journal of Economic Entomology 101, 190198.CrossRefGoogle ScholarPubMed
Gomez-P, L.M., Giraldo, C., Lopez, A. & Uribe, S. (2009) Molecular and morphological differentiation of Oleria makrena (Hewitson) and Oleria fumata (Haensch) (Lepidoptera: Ithomiinae). Neotropical Entomology 38, 616623.CrossRefGoogle ScholarPubMed
Gould, F. (1998) Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annual Review of Entomology 43, 701726.CrossRefGoogle ScholarPubMed
Gould, F., Martinezramirez, A., Anderson, A., Ferre, J., Silva, F.J. & Moar, W.J. (1992) Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proceedings of the National Academy of Sciences of the United States of America 89, 79867990.CrossRefGoogle ScholarPubMed
Gould, F., Anderson, A., Reynolds, A., Bumgarner, L. & Moar, W. (1995) Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. Journal of Economic Entomology 88, 15451559.CrossRefGoogle Scholar
Greene, G.L., Leppla, N.C. & Dickerson, W.A. (1976) Velvetbean caterpillar (Lepidoptera, Noctuidae) rearing procedure and artificial medium. Journal of Economic Entomology 69, 487488.CrossRefGoogle Scholar
Groot, A.T., Classen, A., Inglis, O., Blanco, C.A., López, J. Jr, Vargas, A.T., Schal, C., Heckel, G. & Schöfl, G. (2011) Genetic differentiation across North America in the generalist moth Heliothis virescens and the specialist H. subflexa. Molecular Ecology doi: 10.1111/j.1365-294X.2011.05129.x.CrossRefGoogle ScholarPubMed
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hamilton, M.B. (2009) Population Genetics. West Sussex, UK, John Wiley & Sons Ltd.Google Scholar
Han, Q. & Caprio, M.A. (2004) Evidence from genetic markers suggests seasonal variation in dispersal in Heliothis virescens (Lepidoptera: Noctuidae). Environmental Entomology 33, 12231231.CrossRefGoogle Scholar
Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S. & Francis, C.M. (2004) Identification of birds through DNA barcodes. PLoS Biology 2, 16571663.CrossRefGoogle ScholarPubMed
Korman, A.K., Mallet, J., Goodenough, J.L., Graves, J.B., Hayes, J.L., Hendricks, D.E., Luttrell, R., Pair, S.D. & Wall, M. (1993) Population structure in Heliothis virescens (Lepidoptera, Noctuidae) – an estimate of gene flow. Annals of the Entomological Society of America 86, 182188.CrossRefGoogle Scholar
Krafsur, E.S. (2005) Role of population genetics in the sterile insect technique. pp. 389406in Dyck, V.A., Hendrichs, J. & Robinson, A.S. (Eds) Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. Amsterdam, The Netherlands, Springer.CrossRefGoogle Scholar
Librado, P. & Rozas, J. (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.CrossRefGoogle ScholarPubMed
Martel, C., Réjasse, A., Rousset, F., Bethenod, M.-T. & Bourguet, D. (2003) Host-plant-associated genetic differentiation in Northern French populations of the European corn borer. Heredity 90, 141149.CrossRefGoogle ScholarPubMed
McCaffery, A.R. (1998) Resistance to insecticides in heliothine Lepidoptera: a global view. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 353, 17351750.CrossRefGoogle Scholar
Meraner, A., Brandstätter, A., Thaler, R., Aray, B., Unterlechner, M., Niederstätter, H., Parson, W., Zelger, R., Dalla Via, J. & Dallinger, R. (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers. Molecular Phylogenetics and Evolution 4, 825837.CrossRefGoogle Scholar
Miller, N.J., Dorhout, D.L., Rice, M.E. & Sappington, T.W. (2009) Mitochondrial DNA variation and range expansion in Western bean cutworm (Lepidoptera: Noctuidae): no evidence for a recent population bottleneck. Environmental Entomology 38, 274280.CrossRefGoogle ScholarPubMed
Morinaka, S., Maeyma, T., Maekawa, K., Erniwati, , Prijono, S.N., Ginarsa, I.K., Nakazawa, T. & Hidaka, T. (1999) Molecular phylogeny of birdwing butterflies based on the representatives in most genera of the tribe Troidini (Lepidoptera: Papilionidae). Entomological Science 2, 347358.Google Scholar
Nei, M. (1987) Molecular Evolutionary Genetics. New York, USA, Columbia University Press.CrossRefGoogle Scholar
Nei, M. & Kumar, S. (2000) Molecular Evolution and Phylogenetics. New York, USA, Oxford University Press.CrossRefGoogle Scholar
Norgate, M., Chamings, J., Pavlova, A., Bull, J.K., Murray, N.D. & Sunnucks, P. (2009) Mitochondrial DNA indicates late Pleistocene divergence of populations of Heteronympha merope, an emerging model in environmental change biology. PLoS One 4, E7950-E7950(2009).CrossRefGoogle ScholarPubMed
Nylander, J.A.A. (2004) MrModeltest. Program distributed by the author, Evolutionary Biology Centre, Uppsala University, Sweden.Google Scholar
Ochando, M.D., Reyes, A., Segura, D. & Callejas, C. (2010) Phylogeography: its importance in insect pest control. pp. 3156in Rutgers, D.S. (Ed) Phylogeography: Concepts, Intraspecific Patterns, and Speciation Processes. New York, USA, Nova Science Publishers Inc.Google Scholar
Peakall, R. & Smouse, P.E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.CrossRefGoogle Scholar
Peña, C., Wahlberg, N., Weingartner, E., Kodandaramaiah, U., Nylin, S., Freitas, A.V.L. & Brower, A.V.Z. (2006) Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Molecular Phylogenetics and Evolution 40, 2949.CrossRefGoogle ScholarPubMed
Porreta, D., Canestrelli, D., Bellini, R., Celli, G. & Urbanelli, S. (2007) Improving insetc pest management through population genetic data: a case study of the mosquito Ochlerotatus caspius (Pallas). Journal of Applied Ecology 44, 682691.CrossRefGoogle Scholar
Rambaut, A. & Drummond, A.J. (2007) Tracer. Available online at http://beast.bio.ed.ac.uk/Tracer (accessed 2 November 2011).Google Scholar
Roderick, G.K. (1996) Geographic structure insect populations: Gene flow, phylogeography, and their uses. Annual Review of Entomology 41, 325352.CrossRefGoogle ScholarPubMed
Roehrdanz, R.L. (1994) Simple method for monitoring dispersal of Heliothis (Lepidoptera, Noctuidae) backcross sterility genes. Journal of Economic Entomology 87, 676679.CrossRefGoogle ScholarPubMed
Roehrdanz, R.L., Lopez, J.D., Loera, J. & Hendricks, D.E. (1994) Limited mitochondrial-DNA polymorphism in North-American populations of Heliothis virescens (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 87, 856866.CrossRefGoogle Scholar
Rogers, A.R. & Harpending, H. (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9, 552569.Google ScholarPubMed
Scott, K.D., Lawrence, N., Lange, C.L., Scott, L.J., Wilkinson, K.S., Merritt, M.A., Miles, M., Murray, D. & Graham, G.C. (2005) Assessing moth migration and population structuring in Helicoverpa armigera (Lepidoptera: Noctuidae) at the regional scale: Example from the Darling Downs, Australia. Journal of Economic Entomology 98, 22102219.CrossRefGoogle ScholarPubMed
Shpak, M., Wakeley, J., Garrigan, D. & Lewontin, R.C. (2010) A structured coalescent process for seasonally fluctuating populations. Evolution 64, 13951409.Google ScholarPubMed
Silva-Brandão, K.L., Freitas, A.V.L., Brower, A.V.Z. & Solferini, V.N. (2005) Phylogenetic relationships of the New World Troidini swallowtails (Lepidoptera: Papilionidae) based on COI, COII, and EF-1 alpha genes. Molecular Phylogenetics and Evolution 36, 468483.CrossRefGoogle Scholar
Silva-Brandão, K.L., Lyra, M.L. & Freitas, A.V.L. (2009) Barcoding Lepidoptera: Current situation and perspectives on the usefulness of a contentious technique. Neotropical Entomology 38, 441451.CrossRefGoogle ScholarPubMed
Silva-Brandão, K.L., Lyra, M.L., Santos, T.V., Seraphim, N., Albernaz, K.C., Pavinato, V.A.C., Martinelli, S., Cônsoli, F.L. & Omoto, C.Exploitation of mitochondrial nad6 as a complementary marker to study population variability in Lepidoptera. Genetics and Molecular Biology 34, in press.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Slatkin, M. (1985) Gene flow in natural populations. Annual Review of Ecology and Systematics 16, 393430.CrossRefGoogle Scholar
Slatkin, M. (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457462.CrossRefGoogle ScholarPubMed
Slatkin, M. & Hudson, R.R. (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555562.CrossRefGoogle ScholarPubMed
Sperling, F.A.H. & Hickey, D.A. (1994) Mitochondrial-DNA sequence variation in the spruce budworm species complex (Choristoneura: Lepidoptera). Molecular Biology and Evolution 11, 656665.Google ScholarPubMed
Tabashnik, B.E. (1994) Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology 39, 4779.CrossRefGoogle Scholar
Tabashnik, B.E. & Carrière, Y. (2008) Evolution of insect resistence to transgenic plants. pp. 267279in Tilmon, K.J. (Ed) Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects. Berkeley, CA, USA, University of California Press.Google Scholar
Tajima, F. (1989) The effect of change in population size on DNA polymorphism. Genetics 123, 585595.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Templeton, A.R., Crandall, K.A. & Sing, C.F. (1992) A caldistic analysis of phenotipic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619633.CrossRefGoogle Scholar
Tomquelski, G.V. & Maruyama, L.C.T. (2009) Lagarta-da-maçã em soja. Revista Cultivar 117, 2022.Google Scholar
Veloso, H.P., Rangel Filho, A.L.R. & Lima, J.C.A. (1991) Classificação da Vegetação Brasileira, Adaptada a um Sistema Universal. Rio de Janeiro, Brazil, Fundação Instituto Brasileiro de Geografia e Estatística, IBGE.Google Scholar
Waldvogel, M. & Gould, F. (1990) Variation in oviposition preference of Heliothis virescens in relation to macroevolutionary patterns of Heliothine host range. Evolution 44, 13261337.CrossRefGoogle ScholarPubMed
Weller, S.J., Pashley, D.P., Martin, J.A. & Constable, J.L. (1994) Phylogeny of noctuoid moths and the utility of combining independent nuclear and mitochondrial genes. Systematic Biology 43, 194211.CrossRefGoogle Scholar
Werneck, F.P. (2011) The diversification of eastern South American open vegetation biomes: Historical biogeography and perspectives. Quaternary Science Reviews 30, 16301648.CrossRefGoogle Scholar
Yagi, T., Sasaki, G. & Takebe, H. (1999) Phylogeny of Japanese papilionid butterflies inferred from nucleotide sequences of the mitochondrial ND5 gene. Journal of Molecular Evolution 48, 4248.CrossRefGoogle ScholarPubMed
Yang, L., Wei, Z.J., Hong, G.Y., Jiang, S.T. & Wen, L.P. (2009) The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera: Geometridae). Molecular Biology Reports 36, 14411449.CrossRefGoogle ScholarPubMed