Hostname: page-component-cc8bf7c57-qfg88 Total loading time: 0 Render date: 2024-12-11T22:58:15.409Z Has data issue: false hasContentIssue false

Genetic differentiation of Liparus glabrirostris (Curculionidae: Molytinae) populations from the fragmented habitats of the Alps and Carpathian Mountains

Published online by Cambridge University Press:  24 May 2016

M. Mitrović*
Affiliation:
Department of Plant Pests, Institute for Plant Protection and Environment, Banatska 33, 11080 Zemun, Serbia
Ž. Tomanović
Affiliation:
Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
M. Jakovljević
Affiliation:
Department of Plant Pests, Institute for Plant Protection and Environment, Banatska 33, 11080 Zemun, Serbia
D. Radović
Affiliation:
Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
J. Havelka
Affiliation:
Laboratory of Aphidology, Department of Experimental Ecology, Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 37005 České Budějovice, Czech Republic
P. Stary
Affiliation:
Laboratory of Aphidology, Department of Experimental Ecology, Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 37005 České Budějovice, Czech Republic
*
*Author for correspondence: Phone: +381112611762 Email: [email protected]

Abstract

Populations of Liparus glabrirostris (Curculionidae: Molytinae), a weevil inhabiting higher altitudes of Central Europe, were sampled from 24 localities in the Alps and Carpathian Mountains, and the geographical structuring of genetic variation was analyzed. Comparison of the concatenated mitochondrial cytochrome oxidase subunit I and subunit II sequences revealed consistent genetic divergence between the populations of L. glabrirostris from different mountain ranges. In phylogenetic analysis using maximum parsimony and median-joining networks, concatenated mitochondrial haplotypes from the Alps and Carpathians clustered as separate lineages, with high bootstrap support. Substantial genetic distances determined between the separated groups ranged from 2.6 to 3.0%, with divergence estimated to have initiated approximately 0.85–0.98 million years ago. The nuclear elongation factor 1α gene was additionally amplified and haplotype analysis showed very low evolutionary divergence (0.2%), with separate clustering as well. The observed divergence suggests that the populations have been isolated for a long time, as a consequence of environmental changes resulting in varying fragmentation of habitats in the Alps and Carpathians, interrupting genetic exchange events and altering the genetic structure of L. glabrirostris populations. On the other hand, comparison of morphological characteristics showed no differences to confirm genetically well differentiated groups of populations. A polymerase chain reaction and restriction fragment length polymorphism-based method was therefore developed to discriminate between the Alpine and Carpathian lineages.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balalaikins, M. & Bukejs, A. (2012) Latvian Molytinae (Coleoptera, Curculionidae): research history, fauna and bionomy. Acta Biologica Universitatis Daugavpiliensis 12(3), 220.Google Scholar
Bandelt, H.J., Forster, P. & Rohl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.CrossRefGoogle ScholarPubMed
Benedikt, S., Borovec, R., Fremuth, J., Krátký, J., Schön, K., Skuhrovec, J. & Trýzna, M. (2010) Komentovaný seznam nosatcovitých brouků (Coleoptera: Curculionoidea bez Scolytinae a Platypodinae) České republiky a Slovenska. Klapalekiana 46, 1363.Google Scholar
Brower, A.V.Z. (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 64916495.CrossRefGoogle ScholarPubMed
Campbell, N., Reece, J. & Mitchell, L. (1999) The Origin of Species, pp. 445463. California, USA, Benjamin/Cummings.Google Scholar
DeSalle, R., Egan, M.G. & Siddall, M. (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 19051916.CrossRefGoogle ScholarPubMed
Elias, S.A. (2007) Encyclopedia of Quaternary Science. Surrey, UK, Royal Holloway, University of London.Google Scholar
Emerson, B.C., Oromí, P. & Hewitt, G.M. (2000) Colonization and diversification of the species Brachyderes rugatus (Coleoptera) on the Canary Islands: evidence from mtDNA COII gene sequences. Evolution 54, 911923.Google ScholarPubMed
Gadek, B. & Grabiec, M. (2008) Glacial ice and permafrost distribution in the Medena Kotlina (Slovak Tatras): mapped with application of GPR and GST measurements. Studia Geomorphologica Carpatho-Balcanica XLII, 522.Google Scholar
Germann, C. & Luscher, B. (2007) Contribution to the weevil-fauna of the Swiss National Park with an up-to-date checklist (Coleoptera, Curculionoidea). pp. 203 in Cherix, D., Gonseth, Y. & Pasche, A. (Eds) Faunistique et ecologie des invertebres au Parc National Suisse/Faunistik und Oekologie der Wirbellosen im Schweizerischen Nationalpark.-Nationalpark-Forschung in der Schweiz 94. Zernez, Swiss Academy of Sciences.Google Scholar
Haranczyk, H., Florek, M., Nowak, P. & Knutelski, S. (2012) Water bound in Elytra of the weevil Liparus glabrirostris (Küster, 1849) by NMR and Sorption Isotherm (Coleoptera: Curculionidae). Acta Physica Polonica 121, 491496.CrossRefGoogle Scholar
Hernańdez-Vera, G., Mitrović, M., Jović, J., Toševski, I., Caldara, R., Gassmann, A. & Emerson, B.C. (2010) Host-associated genetic differentiation in a seed parasitic weevil Rhinusa antirrhini (Coleptera: Curculionidae) revealed by mitochondrial and nuclear sequence data. Molecular Ecology 19(11), 22862300.CrossRefGoogle Scholar
Hernández-Vera, G., Caldara, R., Toševski, I. & Emerson, B.C. (2013) Molecular phylogenetic analysis of archival tissue reveals the origin of a disjunct southern African–Palaearctic weevil radiation. Journal of Biogeography 40, 13481359.CrossRefGoogle Scholar
Hewitt, G.M. (1996) Some genetic consequences of ice ages, and their role, in divergence and speciation. Biological Journal of the Linnean Society 58, 247276.CrossRefGoogle Scholar
Hoffmann, A. (1954) Faune de France-Coleopteres Curculionides. Editions Paul Lechevalier, Paris 59, 4871208.Google Scholar
Karen, B., Kubow, C., Robinson, T., Shama, L.N.S. & Jokela, J. (2010) Spatial scaling in the phylogeography of an alpine caddisfly, Allogamus uncatus, within the central European Alps. Journal of the North American Benthological Society 29(3), 10891099.Google Scholar
Krascsenitsova, E., Kozanek, M., Ferencık, J., Roller, L., Stauffer, C. & Bertheau, C. (2013) Impact of the Carpathians on the genetic structure of the spruce bark beetle Ips typographus . Journal of Pest Science 86, 669676.CrossRefGoogle Scholar
Provan, J. & Bennet, K.D. (2008) Phylogeographic insights into cryptic glacial refugia. Trends in Ecology and Evolution 23, 564571.CrossRefGoogle ScholarPubMed
Reitter, E. (1924) Die Liparus-Arten aus Europa und den angrenzenden Gebieten. (Col. Curcul.).CrossRefGoogle Scholar
Riddle, B.R. (1996) The molecular phylogeographic bridge between deep and shallow history continental biota. Tree II, 207211.Google Scholar
Schmitt, T. (2007) Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology 4, 11.CrossRefGoogle ScholarPubMed
Simon, C., Frati, F., Crespi, B., Liu, H. & Flook, P.K. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Steffen, U.P., Theissinger, K., Ujvarosi, L., Balint, M. & Haase, P. (2009) Patterns of population structure in two closely related, partially sympatric caddisflies in Eastern Europe: historic introgression, limited dispersal, and cryptic diversity. Journal of the North American Benthological Society 28, 517536.Google Scholar
Stepanović, S., Kosovac, A., Krstić, O., Jović, J. & Toševski, I. (2015) Morphology versus DNA barcoding: two sides of the same coin. A case study of Ceutorhynchus erysimi and C. contractus identification. Insect Science. doi: 10.1111/1744-7917.12212.Google Scholar
Stewart, J.R. & Adrian, M. (2001) Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution 16, 608613.CrossRefGoogle Scholar
Tamura, K. & Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512526.Google ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Toševski, I., Caldara, R., Jović, J., Hernańdez-Vera, G., Baviera, C., Gassmann, A. & Emerson, B.C. (2011) Morphological, molecular and biological evidence reveal two cryptic species in Mecinus janthinus Germar (Coleoptera, Curculionidae), a successful biological control agent of Dalmatian toadflax, Linaria dalmatica (Lamiales, Plantaginaceae). Systematic Entomology 36(4), 741753.CrossRefGoogle Scholar
Toševski, I., Jović, J., Krstić, O. & Gassmann, A. (2013) PCR-RFLP-based method for reliable discrimination of cryptic species within Mecinus janthinus species complex (Mecinini, Curculionidae) introduced in North America for biological control of invasive toadflaxes. Biocontrol 58(4), 563573.CrossRefGoogle Scholar
Weiss, C. (2007) StatSoft, Inc., Tulsa, OK: STATISTICA, Version 8. AStA 91, 339341.CrossRefGoogle Scholar
Williams, R.S. Jr. & Ferregno, J.G. (2005) Satellite image atlas of glaciers of the world: Fact Sheet 1386-E-1.CrossRefGoogle Scholar
Wanat, M. & Mokrzycki, T. (2005) A new checklist of the weevils of Poland (Coleoptera: Curculionoidea). Genus 16(1), 69117.Google Scholar
Wares, J.P. (2001) Patterns of speciation inferred from mitochondrial DNA in North American Chthamalus (Cirripedia: Balanomorpha: Chthamaloidea). Molecular Phylogenetics and Evolution 18, 104116.CrossRefGoogle ScholarPubMed