Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T05:34:01.094Z Has data issue: false hasContentIssue false

Flight behaviour and dispersal of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) adults using mark-release-recapture method

Published online by Cambridge University Press:  24 May 2016

J.A. Ávalos
Affiliation:
Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
S. Balasch
Affiliation:
Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
A. Soto*
Affiliation:
Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
*
*Author for correspondence Phone: (+34) 963 879 252 Fax: (+34) 963 877 331 E-mail: [email protected]

Abstract

The flight ability and patterns of an insect influence its spread, and the study of its behaviour can be used to improve the strategies to control the pest. Regarding Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae), one of the worst threats to palm trees worldwide, laboratory experiments have been conducted to analyze their flight potential. However, these data must be complemented with tests that allow us to know its flight behaviour and dispersal patterns under field conditions. Two mark-release-recapture experiments were conducted in areas with R. ferrugineus infestations. In the first, the effects of weevil sex, temperature, solar radiation, and relative humidity, on the take-off and flight mobility of adults were analyzed. The second experiment aimed to determine the maximum flight distance covered by adults in field. The take-off rate for R. ferrugineus males was significantly greater than for females, and was positively influenced by temperature (optimum take-off around 25°C) and solar radiation, both factors being highly correlated. Female weevil recaptures were significantly higher, especially as temperatures increased (optimum recapture around 21°C). Dispersal distances of weevil adults increased when temperatures rose, and while this insect tended to fly short distances (<500 m), it was able to cover up to 7 km. The dispersal of R. ferrugineus adults mainly occurred during the first 7 days after their release, and when relative humidity increased, their dispersal time was reduced. The results obtained will permit a more effective implementation of certain measures used to control R. ferrugineus, such as olfactory trapping or intensive surveillance around pest outbreaks.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, M.S.T., Saleh, M.M.E. & Akil, A.M. (2001) Laboratory and field evaluation of the pathogenicity of entomopathogenic nematodes to the red palm weevil, Rhynchophorus ferrugineus (Oliv.) (Col.: Curculionidae). Journal of Pest Science 74, 167168.CrossRefGoogle Scholar
Abbas, M.S.T., Hanounik, S.B., Shahdad, A.S. & Al-Bagham, S.A. (2006) Aggregation pheromone traps, a major component of IPM strategy for the red palm weevil, Rhynchophorus ferrugineus in date palms (Coleoptera: Curculionidae). Journal of Pest Science 79, 6973.Google Scholar
Abraham, V.A., Al-Shuaibi, M., Faleiro, J.R., Abozuhairah, R.A. & Vidyasagar, P.S.P.V. (1998) An integrated management approach for red palm weevil Rhynchophorus ferrugineus Oliv. – A key pest to date palm in the Middle East. Sultan Qaboos University Journal for Scientific Research Agricultural Science 3, 7783.Google Scholar
Abraham, V.A., Faleiro, J.R., Kumar, T.P. & Al-Shuaibi, M.A. (1999) Sex ratio of red palm weevil Rhynchophorus ferrugineus Oliv., captured from date plantations of Saudi Arabia using pheromone (ferrolure) traps. Indian Journal of Agricultural Sciences 61, 201204.Google Scholar
Aldryhim, Y. & Al-Bukiri, S. (2003) Effect of irrigation on within-grove distribution of red palm weevil Rhynchophorus ferrugineus . Agricultural and Marine Sciences 8, 4749.Google Scholar
Al-Saoud, A. (2011) Comparative effectiveness of four food baits in aggregation pheromone traps on red palm weevil Rhynchophorus ferrugineus Olivier. Arab Journal of Plant Protection 29, 8389.Google Scholar
Assggaf, S.M. (2013) First record of the red palm weevil [Rhynchophorus ferrugineus oliv. (Coleopteran: Curculonidee)] in Yemen. Arab and Near East Plant Protection Newsletter 60, 67.Google Scholar
Ávalos, J.A. & Soto, A. (2015) Study of chromatic attraction of the red palm weevil, Rhynchophorus ferrugineus using bucket traps. Bulletin of Insectology 68, 18.Google Scholar
Ávalos, J.A., Borrás, M. & Soto, A. (2011) Aportaciones sobre el comportamiento de adultos de Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) mediante el análisis de sus capturas en trampas. PHYTOMA España 226, 2022.Google Scholar
Ávalos, J.A., Martí-Campoy, A. & Soto, A. (2014) Study of the flying ability of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) adults using a computer-monitored flight mill. Bulletin of Entomological Research 104, 462470.Google Scholar
Chapman, J.W., Drake, V.A. & Reynolds, D.R. (2011) Recent insights from radar studies of insect flight. Annual Review of Entomology 56, 337356.Google Scholar
Cooter, R.J. (1993) The flight potential of insect pests and its estimation in the laboratory: Techniques, limitations and insights. Thorpe Bay, United Kingdom, Central Association of Bee-keepers, 24 pp.Google Scholar
Coviella, C.E., Garcia, J.F., Jeske, D.R., Redak, R.A. & Luck, R.F. (2006) Feasibility of tracking within-field movements of Homalodisca coagulata (Hemiptera: Cicadellidae) and estimating its densities using fluorescent dusts in mark-release-recapture experiments. Journal of Economic Entomology 99, 10511057.Google Scholar
Econex (2013 a) Rhynchonex® feromona. Sanidad Agrícola Econex. Available online at http://www.e-econex.com/atrayentes-para-insectos-ficha.php?ida=6&n=ECONEXFERROLURE+ (accessed 2 June 2014).Google Scholar
Econex (2013 b) Rhynchonex® kairomona. Sanidad Agrícola Econex. Available online at http://www.e-econex.com/atrayentes-para-insectos-ficha.php?ida=7&n=ECONEXWEEVILMAGNET (accessed 2 June 2014).Google Scholar
El-Garhy, M.E. (1996) Field evaluation of the aggregation pheromone of Rhynchophorus ferrugineus in Egypt. In Brighton Crop Protection Conference: Pests & Diseases, 18–21 November 1996 Brighton, United Kingdom.Google Scholar
EPPO/OEPP (2008) Rhynchophorus ferrugineus. Data sheets of Quarantine Pests 38, 5559.Google Scholar
EPPO/OEPP (2009) First record of Rhynchophorus ferrugineus in: Morocco and Curaçao, Netherland Antilles. EPPO Reporting Service, Pest & Diseases 2009 1, 116.Google Scholar
Esteban-Durán, J., Yela, J.L., Beitia-Crespo, F. & Jiménez-Álvarez, A. (1998) Biología del Curculiónido ferruginoso de las palmeras Rhynchophorus ferrugineus (Olivier) en laboratorio y campo. Ciclo en cautividad, peculiaridades biológicas en su zona de introducción en España y métodos biológicos de detección y posible control (Coleoptera: Curculionidae: Rhynchophorinae). Boletín Sanidad Vegetal Plagas 24, 737748.Google Scholar
Faleiro, J.R. (2006) A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. International Journal of Tropical Insect Science 26, 135154.Google Scholar
Faleiro, J.R. & Rangnekar, P.A. (2000) Sex ratio of pheromone trap captured red palm weevils Rhynchophorus ferrugineus Oliv. in coconut gardens of Goa. In International Conference of plantation Crops: Coconut development Board, 12–15 December 2000 Hyderabad, India.Google Scholar
Gavriel, S., Gazit, Y., Leach, A., Mumford, J. & Yuval, B. (2012) Spatial patterns of sterile Mediterranean fruit fly dispersal. Entomologia Experimentalis et Applicata 142, 1726.Google Scholar
Giblin-Davis, R.M., Faleiro, J.R., Jacas, J.A., Peña, J. & Vidyasagar, P.S.P.V. (2013) Biology and management of the Red Palm Weevil, Rhynchophorus ferrugineus . pp. 134 in Peña, J. (Ed) Potential Invasive Pests of Agricultural Crops. Wallingford, UK, First, CAB International.Google Scholar
Goldsworthy, G.J. & Wheeler, C.H. (1989) Preface. pp. 34 in Goldsworthy, G. & Wheeler, C. (Eds) Insect Flight. Florida, CRC Press.Google Scholar
Hallett, R.H., Oehlschlager, A.C. & Borden, J.H. (1999) Pheromone trapping protocols for the Asian palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). International Journal of Pest Management 45, 231237.CrossRefGoogle Scholar
Haris, M., Nang, M., Chuah, T. & Wahizatul, A. (2014) The efficacy of synthetic food baits in capturing red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in campus area of University Malaysia Terengganu. Serangga 19, 6381.Google Scholar
Hernández, R., Ortiz, A. & Pérez, V. (2011) Monochamus galloprovincialis (Olivier, 1795) (Coleoptera: Cerambycidae), comportamiento y distancias de vuelo. Boletín Sanidad Vegetal Plagas 37, 7996.Google Scholar
Hoddle, M.S., Hoddle, C.D., Faleiro, J.R., El-Shafie, H.A.F., Jeske, D.R. & Salla, A.A. (2015) How far can the Red palm weevil (Coleoptera: Curculionidae) fly? Computerized flight mill studies with field-captured weevils. Journal of Economic Entomology 1, 25992609.Google Scholar
Johnson, C.G. (1969) Migration and Dispersal of Insects by Flight. London, United Kingdom, Methuen & CO Ltd, 763 pp.Google Scholar
Kalshoven, L.G.E. (1981) Pest of crops in Indonesia. Ichtiar Baru, Indonesia, Elsevier, 701 pp.Google Scholar
Karpun, N., Zhuraleva, E. & Ignatova, Y. (2014) First report about invasion of Rhynchophorus ferrugineus Oliv. on Russian Black Sea coast. In 10th International Science Practical Conference Sheffield, December 2014 Sheffield, United Kingdom.Google Scholar
Kissling, W.D., Pattemore, D. & Hagen, M. (2013) Challenges and prospects in the telemetry of insects. Biological Reviews of the Cambridge Philosophical Society 513, 511530.Google Scholar
La Mantia, G., Lo Verde, G. & Ferry, M. (2008) Le palme colpite da punteruolo risanate con la dendrochirurgia. Supplemento a l'Informatore Agrario 35, 4345.Google Scholar
Margaritopoulos, J.T., Voudouris, C.Ch., Olivares, J., Sauphanor, B., Mamuris, Z., Tsitsipis, A. & Franck, P. (2012) Dispersal ability in codling moth: mark-release-recapture experiments and kinship analysis. Agricultural and Forest Entomology 14, 399407.CrossRefGoogle Scholar
Minitab (2004) Minitab 14 Statistical Software. Version 14. State College, USA, Minitab Inc.Google Scholar
Murphy, S.T. & Briscoe, B.R. (1999) The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of IPM. BioControl 20, 3545.Google Scholar
Oehlschlager, A.C., Chinchilla, C.M. & González, L.M. (1992) Management of the American palm weevil (Rhynchophorus palmarum) and the red ring disease in oil palm by pheromone-based trapping. ASD Oil Palm Papers 5, 2431.Google Scholar
Rugman-Jones, P.F., Hoddle, C.D., Hoddle, M.S. & Stouthamer, R. (2013) The lesser of two weevils: molecular-genetics of pest palm weevil populations confirm Rhynchophorus vulneratus (Panzer 1798) as a valid species distinct from R. ferrugineus (Olivier 1790), and reveal the global extent of both. PLoS ONE 8, 115.Google Scholar
Shahina, F., Salma, J., Mehreen, G., Bhatti, M. & Tabassum, K. (2009) Rearing of Rhynchophorus ferrugineus in laboratory and field conditions for carrying out various efficacy studies using EPNs. Pakistan Journal of Nematology 27, 219228.Google Scholar
Smith, M., Bancroft, J., Li, G., Gao, R. & Teale, S. (2001) Dispersal of Anoplophora glabripennis (Cerambycidae). Environmental Entomology 30, 10361040.Google Scholar
Soroker, V., Blumberg, D., Haberman, A., Hamburger-Rishard, M., Reneh, S., Talebaev, S., Anshelevich, L. & Harari, A. (2005) Current status of Red palm weevil infestation in Date palm plantations in Israel. Phytoparasitica 33, 97106.Google Scholar
Statgraphics (2010) Statgraphics Centurion XVI. Version 16.1.11., Warrenton, USA, StatPoint Technologies Inc.Google Scholar
Szendrei, Z., Kramer, M. & Weber, D.C. (2009) Habitat manipulation in potato affects Colorado potato beetle dispersal. Journal of Applied Entomology 133, 711719.Google Scholar
Viado, G.B. & Bigornia, A.E. (1949) A biological study of the Asiatic palm weevil, Rhynchophorus ferrugineus (Olivier) (Curculionidae, Coleoptera). The Philippine Agriculturist 33, 127.Google Scholar
Weissling, T., & Giblin-Davis, R. (1993) Water loss dynamics and humidity preference of Rhynchophorus cruentatus (Coleoptera: Curculionidae) adults. Environmental Entomology 22, 9398.Google Scholar
Weissling, T.J., Giblin-Davis, R.M., Center, B.J. & Hiyakawa, T. (1994) Flight behavior and seasonal trapping of Rhynchophorus cruentatus (Coleoptera: Curculionidae). Annals of the Entomological Society of America 87, 641647.Google Scholar