Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T19:20:54.296Z Has data issue: false hasContentIssue false

The effects of different prey regimes on the proteolytic digestion of nymphs of the spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae)

Published online by Cambridge University Press:  10 February 2009

S. Pascual-Ruiz
Affiliation:
Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
L. Carrillo
Affiliation:
Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
F. Álvarez-Alfageme
Affiliation:
Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
M. Ruíz
Affiliation:
Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
P. Castañera
Affiliation:
Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
F. Ortego*
Affiliation:
Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
*
*Author for correspondence Fax: (+34)-91-5360432 E-mail: [email protected]

Abstract

The effects of different prey regimes on the performance and digestive physiology of the spined soldier bug, Podisus maculiventris (Say) (Hemiptera: Pentatomidae), were assessed. Specifically, P. maculiventris nymphs were fed on Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), larvae; Egyptian cotton leafworm (ECW); Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae); larvae; Calliphora spp. (CAL) (Diptera: Calliphoridae) pupae or a mixture of the three prey. No differences in development and weight gain were observed when P. maculiventris nymphs were fed different prey species (CPB, ECW or CAL). However, an increase in weight gain and a reduction in the duration of the stadia were observed for nymphs fed with a mixture of the three prey. To investigate the physiological background, biochemical analysis were carried out on insects dissected at the end of the feeding assay. We have found that the proteolytic activity in the salivary glands of P. maculiventris nymphs was not affected by prey species, whereas the relative activity of these proteases in the midgut depends on the prey. Moreover, gel assays proved that the proteolytic profiles of midguts from P. maculiventris nymphs feeding on CPB, ECW and CPB closely resembled those of their prey. All together, these results suggest that P. maculiventris may utilize enzymes from the prey they consume that may facilitate the process of digestion.

Type
Research Paper
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Alfageme, F., Martínez, M., Pascual-Ruiz, S., Castañera, P., Diaz, I. & Ortego, F. (2007) Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Research 16, 113.Google Scholar
Bell, H.A., Down, R.E., Edwards, J.P., Gatehouse, J.A. & Gatehouse, A.M.R. (2005) Digestive proteolytic activity in the gut and salivary glands of the predatory bug Podisus maculiventris (Heteroptera: Pentatomidae); effect of proteinase inhibitors. European Journal of Entomology 102, 139145.CrossRefGoogle Scholar
Boyd, D.W. (2003) Digestive enzymes and stylet morphology of Deraeocoris nigritulus (Uhler) (Hemiptera: Miridae) reflect adaptations for predatory habits. Annals of the Entomological Society of America 96, 667671.CrossRefGoogle Scholar
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.Google Scholar
Broadway, R.M. & Duffey, S.S. (1988) The effect of plant protein quality on insect digestive physiology and the toxicity of plant proteinase inhibitors. Journal of Insect Physiology 34, 11111117.CrossRefGoogle Scholar
Cohen, A.C. (1990) Feeding adaptations of some predaceous Hemiptera. Annals of the Entomological Society of America 83, 12151223.CrossRefGoogle Scholar
Cohen, A.C. (1995) Extra-oral digestion in predaceous terrestrial Arthopoda. Annual Review of Entomology 40, 85103.CrossRefGoogle Scholar
De Clercq, P. (2000) Predaceous stinkbugs (Pentatomidae: Asopinae). pp. 737789in Schaefer, C.W. & Panizzi, A.R. (Eds) Heteroptera of Economic Importance. Boca Raton, CRC Press.CrossRefGoogle Scholar
De Clercq, P., Merlevede, F. & Tirry, L. (1998) Unnatural prey and artificial diets for rearing Podisus maculiventris (Heteroptera: Pentatomidae). Biological Control 12, 137142.Google Scholar
De Clercq, P., Wyckhuys, K., De Oliveira, H.N. & Klapwijk, J. (2002) Predation by Podisus maculiventris on different life stages of Nezara viridula. Florida Entomologist 85, 197202.Google Scholar
Felton, G.W. (1996) Nutritive quality of plant protein: Sources of variation and insect herbivore responses. Archives of Insect Biochemistry and Physiology 32, 107130.Google Scholar
Habibi, J., Backus, E.A., Coudron, T.A. & Brandt, S.L. (2001) Effect of different host substrates on hemipteran salivary protein profiles. Entomologia Experimentalis et Applicata 98, 369375.Google Scholar
Lantz, M.S. & Ciborowski, P. (1994) Zymographic techniques for detection and characterization of microbial proteases. Methods in Enzymology 235, 563594.CrossRefGoogle ScholarPubMed
Lee, M.J. & Anstee, J.H. (1995) Endoproteases from the midgut of larval Spodoptera littoralis include a chymotrypsin-like enzyme with an extended binding site. Insect Biochemistry and Molecular Biology 25, 4961.CrossRefGoogle Scholar
Legaspi, J.C. & Legaspi, B.C. (2004) Does a polyphagous predator prefer prey species that confer reproductive advantage? Case study of Podisus maculiventris. Environmental Entomology 33, 14011409.CrossRefGoogle Scholar
Legaspi, J.C., Shapiro, J.P. & Legaspi, B.C. (2004) Biochemical comparison of field and laboratory populations of Podisus maculiventris (Heteroptera: Pentatomidae) in Florida. Southwestern Entomologist 29, 301303.Google Scholar
Mahdian, K., Kerckhove, J., Tirry, L. & De Clercq, P. (2006) Effects of diet on development and reproduction of the predatory pentatomids Picromerus bidens and Podisus maculiventris. BioControl 51, 725739.CrossRefGoogle Scholar
Miles, P.W. (1987) Feeding process of Aphidoidea in relation to effects on their food plants. pp. 321335in Minks, A.K. & Harrewijn, P. (Eds) Aphids, their Biology, Natural Enemies and Control, Vol. A. Amsterdam, The Netherlands, Elsevier Science Publishers.Google Scholar
Oliveira, J.A., Oliveira, M.G.A., Guedes, R.N.C. & Soares, M.J. (2006) Morphology and preliminary enzyme characterization of the salivary glands from the predatory bug Podisus nigrispinus (Heteroptera: Pentatomidae). Bulletin of Entomological Research 96, 251258.CrossRefGoogle ScholarPubMed
Poitout, S. & Bues, R. (1970) Elevage de plusíeurs espèces de Lépidoptères Noctuidae sur milieu artificiel riche et sur milieu artificiel simplifié. Annales de Zoologie Ecologie Animale 2, 7991.Google Scholar
Shapiro, J.P. & Legaspi, J.C. (2006) Assessing biochemical fitness of predator Podisus maculiventris (Heteroptera: Pentatomidae) in relation to food quality: Effects of five species of prey. Annals of the Entomological Society of America 99, 321326.CrossRefGoogle Scholar
Shapiro, J.P., Wasserman, H.A., Greany, P.D. & Nation, J.L. (2000) Vitellin and vitellogenin in the soldier bug, Podisus maculiventris: Identification with monoclonal antibodies and reproductive response to diet. Archives of Insect Biochemistry and Physiology 44, 130135.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Stamopoulos, D.C., Diamantidis, G. & Chloridis, A. (1993) Activités enzymatiques du tube digestif du prédateur Podisus maculiventris (Hem.: Pentatomidae). Entomophaga 38, 493499.Google Scholar
Strohmeyer, H.H., Stamp, N.E., Jarzomski, C.M. & Bowers, M.D. (1998) Prey species and prey diet affect growth of invertebrate predators. Ecological Entomology 23, 6879.CrossRefGoogle Scholar
Thie, N.M.R. & Houseman, J.G. (1990) Identification of cathepsin B, D, and H in the larval midgut of Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Insect Biochemistry 20, 313318.CrossRefGoogle Scholar
Traugott, M.S. & Stamp, N.E. (1996) Effects of chlorogenic acid and tomatine-fed caterpillars on behavior of an insect predator. Journal of Insect behavior 9, 461476.CrossRefGoogle Scholar
Wittmeyer, J.L. & Coudron, T.A. (2001) Life table parameters, reproductive rate, intrinsic rate of increase, and estimated cost of rearing Podisus maculiventris (Heteroptera: Pentatomidae) on an artificial diet. Journal of Economic Entomology 94, 13441352.CrossRefGoogle Scholar
Zanuncio, J.C., Molina-Rugama, A.J., Serrao, J.E. & Pratissoli, D. (2001) Nymphal development and reproduction of Podisus nigrispinus (Heteroptera: Pentatomidae) fed with combinations of Tenebrio molitor (Coleoptera: Tenebrionidae) pupae and Musca domestica (Diptera: Muscidae) larvae. Biocontrol Science and Technology 11, 331337.CrossRefGoogle Scholar