Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-16T07:28:26.078Z Has data issue: false hasContentIssue false

Effect of temperature and host plant leaf morphology on the efficacy of two entomopathogenic biocontrol agents of Thrips palmi (Thysanoptera: Thripidae)

Published online by Cambridge University Press:  09 March 2007

A.G.S. Cuthbertson*
Affiliation:
Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK
J.P. North
Affiliation:
Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK
K.F.A. Walters
Affiliation:
Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK
*
*Fax: +44 (0) 1904 462111 E-mail: [email protected]

Abstract

The efficacy of two entomopathogenic biocontrol agents, Steinernema feltiae (Filipjev) and Verticillium lecanii (Zimmerman) Viégas (reclassified now as Lecanicillium muscarium (Petch) Zare & Gams), against Thrips palmi Karny was investigated. Assessments of the effect of temperature on the efficacy of S. feltiae indicated that higher mortality of T. palmi was recorded at 20°C compared to either 15 or 25°C, whereas significantly higher T. palmi mortality followed application of L. muscarium at 25°C. Testing the control agents efficacy on three host plants; chrysanthemum, sweet pepper and cucumber, under constant temperature and high humidity conditions produced no significant difference in the level of T. palmi larval mortality on each host plant. Incorporating the chemical insecticide imidacloprid with both biological agents in a combined control strategy increased T. palmi juvenile mortality. The potential role of S. feltiae and L. muscarium within integrated pest management programmes for the control of T. palmi is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. (2000) Council Directive 2000/29/EC of 8 May 2000 on protective measures against the introduction into the Community of organisms harmful to plants or plant products and against their spread within the Community. Journal of European Community 43 L169 1112.Google Scholar
Azaizeh, H., Gindin, G., Said, O. & Barash, L. (2002) Biological control of the western flower thrips Frankliniella occidentalis in cucumber using the entomopathogenic fungus Metarhizium anisopliae. Phytoparasitica 30, 1824.CrossRefGoogle Scholar
Barbercheck, M.E., Wang, J. & Hirsh, I.S. (1995) Host plant effects on entomopathogenic nematodes. Journal of Invertebrate Pathology 66, 169177.CrossRefGoogle Scholar
Bartlett, P.W. (1994) Plant health in the European Single Market – a UK view of the first year. Brighton Crop Protection Conference Pests and Diseases 1, 167174.Google Scholar
Baur, M.E., Kaya, H.K. & Thurston, G.S. (1995) Factors affecting entomopathogenic nematode infection of Plutella xylostella on a leaf surface. Entomologia Experimentalis et Applicata 77, 239250.CrossRefGoogle Scholar
Broadbent, A.B. & Olthof, T.H.A. (1995) Foliar application of Steinernema carpocapsae (Rhabditida, Steinernematidae) to control Liriomyza trifolii (Diptera, Agromyzidae) larvae in chrysanthemums. Environmental Entomology 24, 431435.CrossRefGoogle Scholar
Chyzik, R., Glazer, I. & Klein, M. (1996) Virulence and efficacy of different entomopathogenic nematode species against western flower thrips (Frankliniella occidentalis). Phytoparasitica 24, 103110.CrossRefGoogle Scholar
Cuthbertson, A.G.S., Head, J., Walters, K.F.A. & Gregory, S.A. (2003a) The efficacy of the entomopathogenic nematode, Steinernema feltiae, against instars of Bemisia tabaci. Journal of Invertebrate Pathology 83, 267269.CrossRefGoogle Scholar
Cuthbertson, A.G.S., Head, J., Walters, K.F.A. & Murray, A.W.A. (2003b) The integrated use of chemical insecticides and the entomopathogenic nematode, Steinernema feltiae, for the control of sweetpotato whitefly, Bemisia tabaci. Nematology 5, 713720.CrossRefGoogle Scholar
Cuthbertson, A.G.S., Walters, K.F.A. & Northing, P. (2005) The susceptibility of immature stages of Bemisia tabaci to the entomopathogenic fungus, Lecanicillium muscarium, on tomato and verbena foliage. Mycopathologia 159, 2329.CrossRefGoogle Scholar
Ebssa, L., Borgemeister, C., Berndt, O. & Poehling, H.M. (2001) Efficacy of entomopathogenic nematodes against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Invertebrate Pathology 78, 119127.CrossRefGoogle ScholarPubMed
Feir, D., El-Moshaty, F.B. & Spaziano, V. (1985) Antibacterial action of extracts of the common milkweed plant, Asclepias syriaca L. Comp. Physiological Ecology 10, 197200.Google Scholar
Gouge, D.H., Hague, N.G.M. (1993) Effects of Steinernema feltiae against sciarids infesting conifers in a propagation house. Annals of Applied Biology 122, 184185.Google Scholar
Gouge, D.H., Hague, N.G.M. (1995a) The susceptibility of different species of sciarid flies to entomopathogenic nematodes. Journal of Helminthology 69, 313318.CrossRefGoogle ScholarPubMed
Gouge, D.H., Hague, N.G.M. (1995b) Glasshouse control of fungus gnats, Bradysia paupera, on fuchsias by Steinernema feltiae. Fundamental and Applied Nematology 18, 7780.Google Scholar
Grewal, P.S. & Richardson, P.N. (1993) Effects of application rates of Steinernema feltiae (Nematoda: Steinernematidae) on biological control of the mushroom fly Lycoriella auripila (Diptera: Sciaridae). Biocontrol Science and Technology 3, 2940.CrossRefGoogle Scholar
Hare, J.D. & Andreadis, T.G. (1983) Variation in the susceptibility of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) when reared on different host plants to the fungal pathogen, Beauveria bassiana in the field and in the laboratory. Environmental Entomology 12, 18921897.CrossRefGoogle Scholar
Head, J., Lawrence, A.J., Walters, K.F.A. (2004) Efficacy of the entomopathogenic nematode, Steinernema feltiae, against Bemisia tabaci in relation to plant species. Journal of Applied Entomology 128, 543547.CrossRefGoogle Scholar
Head, J., Walters, K.F.A. & Langton, S. (2000) The compatibility of the entomopathogenic nematode, Steinernema feltiae, and chemical insecticides for the control of the South American leafminer, Liriomyza huidobrensis. Biocontrol 45, 345353.CrossRefGoogle Scholar
Helyer, N.L., Brobyn, P.J., Richardson, P.N. & Edmondson, R.N. (1995) Control of western flower thrips (Frankliniella occidentalis Pergande) pupae in compost. Annals of Applied Biology 127, 405412.CrossRefGoogle Scholar
Jess, S., Bingham, J.F.W. (2004) Biological control of sciarid and phorid pests of mushroom with predatory mites from the genus Hypoaspis (Acari: Hypoaspidae) and the entomopathogenic nematode Steinernema feltiae. Bulletin of Entomological Research 94, 159167.CrossRefGoogle ScholarPubMed
Keating, S.T. & Yendol, W.G. (1987) Influence of selected host plants on gypsy moth (Lepidoptera: Lymantriidae) larval mortality caused by a baculovirus. Environmental Entomology 17, 952958.CrossRefGoogle Scholar
Kirk, W.D.J. (1997) Feeding Thrips as crop pests 119 – 174 Lewis T. Wallingford, Oxon CAB InternationalGoogle Scholar
Kirk, D.J. & Terry, L.I. (2003) The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agricultural and Forest Entomology 5, 301310.CrossRefGoogle Scholar
Lewis, T. (1998) Pest thrips in perspective. British Crop Protection Conference?–?Pests and Diseases 2, 385390.Google Scholar
MacLeod, A., Head, J. & Gaunt, A. (2004) An assessment of the potential economic impact of Thrips palmi on horticulture in England and the significance of a successful eradication campaign. Crop Protection 23, 601610.CrossRefGoogle Scholar
MacVean, C.M., Brewer, J.W. & Capinera, J.L. (1982) Field tests of antidesiccants to extend the infection period of an entomogenous nematode, Neoaplectana carpocapsae, against the Colorado potato beetle. Journal of Economic Entomology 75, 97101.CrossRefGoogle Scholar
McDonald, J.R., Bale, J.S., Walters, K.F.A. (1997) Low temperature mortality and overwintering of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). Bulletin of Entomological Research 87, 497505.CrossRefGoogle Scholar
McDonald, J.R., Bale, J.S., Walters, K.F.A. (1999) Temperature, development and establishment potential of Thrips palmi (Thysanoptera: Thripidae) in the United Kingdom. European Journal of Entomology 96, 169173.Google Scholar
Miyazaki, M. & Kudo, I. (1988) Bibliography and host plant catalogue of Thysanoptera of Japan. Publication of the Natural Institue of Agro-Environmental Science 3, 1246.Google Scholar
Nielsen, O. & Philipsen, H. (2004) Occurrence of Steinernema species in cabbage fields and the effect of inoculated S. feltiae on Decia radium and its parasitoids. Agricultural and Forest Entomology 6, 2530.CrossRefGoogle Scholar
Osborne, L.S. & Landa, Z. (1992) Biological control of whiteflies with entomopathogenic fungi. Florida Entomologist 75, 456471.CrossRefGoogle Scholar
Poprawski, T.J. & Jones, W.J. (2000) Host plant effects on activity of the mitosporic fungi Beauveria bassiana and Paecilomyces fumosoroseus against two populations of Bemisia whiteflies (Homoptera: Aleyrodidae). Mycopathologia 151, 1120.CrossRefGoogle Scholar
Ramoska, W.A. & Todd, T. (1985) Variation in the efficacy and viability of Beauveria bassiana in the chinch bug (Hemiptera: Lygaeidae) as a result of feeding activity on selected host plants. Environmental Entomology 14, 146148.CrossRefGoogle Scholar
Rossiter, M. (1987) Use of a secondary host by non-outbreak populations of the gypsy moth. Ecology 68, 857868.CrossRefGoogle Scholar
Saito, T. (1991) A field trial of an entomopathogenic fungus, Beauveria bassiana (Bals.) Vuill., for the control of Thrips palmi Karny (Thysanoptera: Thripidae). Japanese Journal of Applied Entomology and Zoology 35, 8081.CrossRefGoogle Scholar
Schultz, J.D. & Keating, S.T. (1991) Host-plant-mediated interactions between the gypsy moth and baculovirus. pp. 489–50 in Barbosa, P. Krischik, V.A. Jones, C.G. (Eds) Microbial mediation of plant–herbivore interactions. New York, Wiley.Google Scholar
Tashiro, H. (1967) Self-watering acrylic cages for confining insects and mites on detached leaves. Journal of Economic Entomology 60, 354356.CrossRefGoogle Scholar
Tsai, J.H., Yue, B., Webb, S.E., Funderburk, J.E. & Tsu, H.T. (1995) Effects of host plant and temperature on growth and reproduction of Thrips palmi (Thysanoptera: Thripidae). Environmental Entomology 24, 15981603.CrossRefGoogle Scholar
Ullman, D.E., Sherwood, J.L. & German, T.L. (1997) Thrips as vectors of plant pathogens. pp. 539566 in Lewis, T. (Ed.) Thrips as crop pests. Wallingford, Oxon CAB International.Google Scholar
Urano, S., Shima, K., Hirose, Y., Nagai, K., Ohno, K., Takemoto, H. & Takagi, M. (2003) Biological control of Thrips palmi (Thysanoptera: Thripidae) with the predatory bug, Wollastoniella rotunda (Hemiptera: Anthocoridae) on greenhouse eggplant in winter. Japanese Faculty of Agriculture Kyushu University 47, 325331.CrossRefGoogle Scholar
Vestergaard, S., Gillespie, A.T., Butt, T.M., Schreiter, G. & Eilenberg, J. (1995) Pathogenicity of the hyphomycete fungi Verticillium lecanii and Metarhizium anisopliae to the western flower thrips, Frankliniella occidentalis. Biocontrol Science and Technology 5, 185192.CrossRefGoogle Scholar
Vierbergen, G. (1996) After introduction of Frankliniella occidentalis in Europe: prevention of establishment of Thrips palmi (Thysanoptera: Thripidae). Acta Phytologica Entomologica Hungarica 31, 267273.Google Scholar
Williams, E.C. & Macdonald, O.C. (1995) Critical factors required by the nematode Steinernema feltiae for the control of the leafminers Liriomyza huidobrensis, Liriomyza bryoniae and Chromatomyia syngenesiae. Annals of Applied Biology 127, 329341.CrossRefGoogle Scholar
Williams, E.C., Walters, K.F.A. (2000) Foliar application of the entomopathogenic nematode, Steinernema feltiae against leafminers on vegetables. Biocontrol Science and Technology 10, 6170.CrossRefGoogle Scholar
Willmott, D.M., Hart, A.J., Long, S.J., Edmondson, R.N. & Richardson, P.N. (2002) Use of cold-active entomopathogenic nematode Steinernema kraussei to control overwintering larvae of the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae) in outdoor strawberry plants. Nematology 4, 925932.Google Scholar
Wilson, M., Nitzsche, P. & Shearer, P.W. (1999) Entomopathogenic nematodes to control black vine weevil (Coleoptera: Curculionidae) on strawberry. Journal of Economic Entomology 92, 651657.CrossRefGoogle ScholarPubMed
Zare, R. & Gams, W. (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73, 150.CrossRefGoogle Scholar