Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T18:34:53.321Z Has data issue: false hasContentIssue false

Effect of release rate and enantiomeric composition on response to pheromones of Megaplatypus mutatus (Chapuis) in poplar plantations of Argentina and Italy

Published online by Cambridge University Press:  17 April 2013

Hernán Funes
Affiliation:
Centro de Investigaciones de Plagas e Insecticidas. JB de La Salle 4397, (B1603ALO) Villa Martelli, Provincia de Buenos Aires, Argentina
Eduardo Zerba
Affiliation:
Centro de Investigaciones de Plagas e Insecticidas. JB de La Salle 4397, (B1603ALO) Villa Martelli, Provincia de Buenos Aires, Argentina 3IA, Universidad de General San Martín. Av. 52, Nro. 3563, (1650) San Martín, Provincia de Buenos Aires, Argentina
Paola Gonzalez-Audino*
Affiliation:
Centro de Investigaciones de Plagas e Insecticidas. JB de La Salle 4397, (B1603ALO) Villa Martelli, Provincia de Buenos Aires, Argentina 3IA, Universidad de General San Martín. Av. 52, Nro. 3563, (1650) San Martín, Provincia de Buenos Aires, Argentina
*
*Author for correspondence Phone/Fax: 54-11-47095334 E-mail: [email protected]

Abstract

Megaplatypus mutatus (=Platypus sulcatus Chapuis) is an Ambrosia beetle native to South America, which was recently introduced in Italy and its presence there is causing severe damage to the local poplar plantations. The male M. mutatus pheromone is composed of (S)-(+)-6-methyl-5-hepten-2-ol [(+)-sulcatol], 6-methyl-5-hepten-2-one (sulcatone) and 3-pentanol. A series of field trials testing dose, blend and enantiomer composition performed in Argentina and Italy evaluated attraction and found that the optimal release rate of pheromone components as baits in cross vane baited traps (CIPEIN-CV) was 6, 6 and 30 mg day−1 of sulcatone, (+)-sulcatol and 3-pentanol, respectively. It was also determined that racemic sulcatol is as effective as the pure (+)-isomer for the purpose of beetle catch, due to the inert nature of the (−)-isomer allowing the usage of low cost racemic sulcatol instead of highly expensive (+)-sulcatol. The results of our work contribute to the development of pheromone-based local technologies with low environmental impact and low cost for control or monitoring of an important pest.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achinelli, F.G., Liljersthröm, G., Aparicio, A., Delgado, M., Jouanny, M. & Mastrandrea, C. (2005) Daños por taladrillo (Megaplatypus mutatus (=Platypus sulcatus)) en plantaciones de álamo (Populus spp.) de Alberti, Buenos Aires: análisis preliminar de la magnitud y distribución de fustes quebrados. Revista Asociación Forestal Argentina 59, 811 (In Spanish).Google Scholar
Alfaro, R., Humble, L.M., Gonzalez Audino, P., Villaverde, R. & Allegro, G. (2007) The threat of the ambrosia beetle Megaplatypus mutatus (Chapuis) [=Platypus mutatus Chapuis] to world poplar resources. Forestry 80, 471479.CrossRefGoogle Scholar
Allegro, G. & Della Beffa, G. (2001) Un nuovo problema entomologico per la pioppicoltura Italiana: Platypus mutatus Chapuis (Coleoptera: Platypodidae). Sherwood Foreste ed alberi oggi 66, 3134 (In Italian).Google Scholar
Allegro, G. & Griffo, R. (2008) I rischi di diffusione di Megaplatypus mutatus. L'Informatore Agrario 13, 7376.Google Scholar
Borden, J. (1990) Use of Semiochemicals to manage coniferous tree pests in Western Canada. pp. 281316in Ridgway, R.L., Silverstein, R.M. & Inscoe, M.N. (Eds) Behavior Modifying Chemicals for Insect Management. Applications of Pheromones and Other Attractants. New York, M. N. Publisher Marcel Dekker, Inc.Google Scholar
Borden, J.H. & Mc Lean, J.A. (1979) Secondary attraction in Gnathotricus retusus and cross attraction of G. sulcatus (Coleoptera: Scolytidae). Journal of Chemical Ecology 5, 7988.Google Scholar
Byrne, K.J., Swigar, A.A., Silverstein, R.M., Borden, J.H., & Stokkink, E. (1974) Sulcatol: population aggregation pheromone in the Scolytid beetle, Gnathotricus sulcatus. Journal of Insect Physiology 20, 18951900.Google Scholar
Fletchmann, C.A.H. & Berisford, C.W. (2003) Identification of sulcatol, a potential pheromone of the ambrosia beetle Gnathotricus materiarus (Col., Scolytidae). Journal of Applied Entomology 127, 189194.CrossRefGoogle Scholar
Funes, H., Zerba, E. & González-Audino, P. (2009) Comparison of three types of traps baited with sexual pheromones for Ambrosia beetle Megaplaytpus mutatus in poplar plantations. Journal of Economic Entomology 102, 15461550.CrossRefGoogle ScholarPubMed
Funes, H., Griffo, R., Zerba, E. & Gonzalez-Audino, P. (2011) Mating disruption of the ambrosia beetle Megaplatypus mutatus in poplar and hazelnut plantations using reservoir systems for pheromones. Entomologia Experimentalis et Applicata 139, 226234.CrossRefGoogle Scholar
Gatti Liguori, P., Zerba, E. & González Audino, P. (2007) New trap for emergent Megaplatypus mutatus. Canadian Entomologist 139, 894896.Google Scholar
Gatti Liguori, P., Zerba, E., Alzogaray, R. & González-Audino, P. (2008) 3-Pentanol: a new attractant present in volatile emissions from the Ambrosia beetle, Megaplatypus mutatus. Journal of Chemical Ecology 34, 14461451.CrossRefGoogle ScholarPubMed
Gatti Liguori, P., Zerba, E. & González Audino, P. (2011) Anatomical site of pheromone accumulation and temporal pattern of pheromone emission in the ambrosia beetle, Megaplatypus mutatus. Physiological Entomology 36, 201207.Google Scholar
González Audino, P., Villaverde, R., Alfaro, R. & Zerba, E. (2005) Identification of volatile emissions from Platypus mutatus (=sulcatus) (Coleoptera: Platypodidae) and their behavioral activity. Journal of Economic Entomology 98, 15061509.Google Scholar
González-Audino, P., Gatti, P. & Zerba, E. (2011) Traslucent pheromone traps increase trapping efficiency of ambrosia beetle Megaplatypus mutatus. Crop Protection 30, 745747.Google Scholar
Hoover, S.E.R., Lindgren, B.S., Keeling, C.I. & Slessor, K.N. (2000) Enantiomer preference of Trypodendron lineatum and effect of pheromone dose and trap length on response to lineatin-baited traps in interior British Columbia. Journal of Chemical Ecology 26, 667677.Google Scholar
Lindgren, B.S. (1983) A multiple funnel trap for scolityd beetles (Coleoptera). Canadian Entomologist 115, 299302.Google Scholar
Milligan, R.H. & Ytsma, G. (1988) Pheromone dissemination by male Platypus apicalis White and P. gracilis Broun (Col. Platypodidae). Journal of Applied Entomology 106, 113118.Google Scholar
Perez, A.L., Campos-Piedra, Y., Chinchilla, C.M., Oehlschlager, A.C., Gries, G., Gries, R., Castrillo, G., Giblin-Davis, R.M., Peña, J.E., Duncan, R.E., Gonzalez, L.M., Pierce, H.D. Jr, McDonald, R. & Andrade, R. (1995) Aggregation pheromones and host kairomones of the West Indian sugarcane weevil, Metamasius hemipterus sericeus (Oliv.) (Coleoptera: Curculionidae). Journal of Chemical Ecology 23, 869888.Google Scholar
Renwick, J.A., Vite, J.P. & Billings, R.F. (1977) Aggregation pheromones in the ambrosia Beetle Platypus flavicornis. Naturwisssenschaften 64, 226.CrossRefGoogle ScholarPubMed
Santoro, F.H. (1962) La copula en Platypus sulcatus Chapuis (Coleoptera: Platypodidae). Revista Investigaciones Forestales 3, 2527 (in Spanish).Google Scholar
Shore, T.L. & Mc Lean, J.A. (1983) Attraction of Platypus wilsoni Swaine (Coleoptera: Platypodidae) to traps baited with sulcatol, ethanol and alpha-pinene. Canadian Forestry Service Research Notes 3, 2425.Google Scholar
Tojo, K. (1985) Intrinsic release rate from matrix-type drug delivery systems. Journal Pharmacology Science 74, 685687.Google Scholar
Tremblay, E., Espinosa, B., Mancini, D. & Caprio, G. (2000) Un coleottero proveniente dal Sudamerica minaccia i pioppi. L'Informatore Agrario 56, 8990.Google Scholar
Wood, S.L. (1993) Revision of the genera of Platypodidae (Coleoptera). Great Basin Naturalist 53, 259281.Google Scholar
Wood, S.L. (2007) Bark and Ambrosia Beetles of South America (Coleoptera: Scolytidae). Provo, Utah, Brigham Young University, M.L. Bean Life Science Museum.Google Scholar
Yong-Biao, L. & Mc Lean, J. A. (1989) Field evaluation of responses of Gnathotrichus sulcatus and Gnathotrichus retusus (Coleoptera: Scolytidae) to semiochemicals. Journal of Economic Entomology 82, 16871690.Google Scholar