Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T07:11:14.945Z Has data issue: false hasContentIssue false

Diversity of tortricid moths in apple orchards: evidence for a cryptic species of Grapholita (Lepidoptera: Tortricidae) from China

Published online by Cambridge University Press:  04 November 2016

Y. Zheng
Affiliation:
College of Plant Protection, Northwest A&F University, Yangling 712100, China Institute of Geology and Paleontology, Linyi University, Linyi 276000, China
R.X. Wu
Affiliation:
College of Plant Protection, Northwest A&F University, Yangling 712100, China
S. Dorn
Affiliation:
ETH Zurich, Applied Entomology, Schmelzbergstrasse 9/LFO, 8092 Zurich, Switzerland
M.H. Chen*
Affiliation:
College of Plant Protection, Northwest A&F University, Yangling 712100, China
*
*Author for correspondence Telephone: ++ (86)-29-87091853 Fax: ++ (86)-29-87091853 E-mail: [email protected]

Abstract

Understanding herbivore diversity both at the species and genetic levels is a key to effective pest management. We examined moth samples from multiple locations from a major apple growing region in China. For specimen collection, we used a pheromone trap designed to attract Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Surprisingly, we found a second species captured at high proportions. Its external morphology (e.g., male genitalia and forewing coloration) was the same as for Grapholita funebrana Treitschke (Lepidoptera: Tortricidae) specimens from Europe. However, the barcode sequence of the mitochondrial gene cytochrome oxidase I (COI) diverged markedly between specimens from China and Europe, and the genetic distance value between the specimens from the two regions as estimated using the Juke-Cantor (JC) model amounted to 0.067. These morphological and molecular findings together point to a cryptic species in G. funebrana from China. Further molecular analyses based on COI and COII genes revealed its extremely high genetic diversity, indicating that the origin of this species includes the sampling region. Moreover, molecular data suggest that this species passed through a recent population expansion. This is the first report on a cryptic species in G. funebrana, as well as the first report on its genetic diversity.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asser-Kaiser, S., Fritsch, E., Undorf-Spahn, K., Kienzle, J., Eberle, K.E., Gund, N.A. & Jehle, J.A. (2007) Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science 317, 19161918.CrossRefGoogle ScholarPubMed
Bandelt, H.J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.Google Scholar
Barcenas, M.N., Unruh, T.R. & Neven, L.G. (2005) DNA diagnostics to identify internal feeders (Lepidoptera: Tortricidae) of pome fruits of quarantine importance. Journal of Economic Entomology 98, 299306.CrossRefGoogle ScholarPubMed
Behere, G.T., Tay, W.T., Russell, D.A., Heckel, D.G., Appleton, B.R., Kranthi, K.R. & Batterham, P. (2007) Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea . BMC Evolutionary Biology 7, 117.Google Scholar
Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K. & Das, I. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22, 148155.Google Scholar
Chen, M.H. & Dorn, S. (2009) Reliable and efficient discrimination of four internal fruit-feeding Cydia and Grapholita species (Lepidoptera: Tortricidae) by polymerase chain reaction-restriction fragment length polymorphism. Journal of Economic Entomology 102, 22092216.Google Scholar
Chen, M.H. & Dorn, S. (2010 a) Cross-amplification of microsatellites from the codling moth Cydia pomonella to three other species of the tribe Grapholitini (Lepidoptera: Tortricidae). Molecular Ecology Resources 10, 10341037.Google Scholar
Chen, M.H. & Dorn, S. (2010 b) Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bulletin of Entomological Research 100, 7585.Google Scholar
Cheney, S., Hadapad, A.B. & Zebitz, C.P.W. (2008) AFLP analysis of genetic differentiation in CpGV resistant and susceptible Cydia pomonella (L.) populations. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 16, 117120.Google Scholar
Choi, K.H., Lee, S.W., Lee, D.H., Kim, D.A. & Kim, S.K. (2008) Recent occurrence status of two major fruit moths, oriental fruit moth and peach fruit moth in apple orchards. Korean Journal of Applied Entomology 47, 1722.Google Scholar
Danilevski, A.S. (1958) The species of fruit moths (Lepidoptera, Pyralidae, Carposidinae, Tortricidae) injurious to fruit trees in the Far East. Entomologicheskoe Obozrenie 37, 282293.Google Scholar
de Jong, M.A., Wahlberg, N., van Eijk, M., Brakefield, P.M. & Zwaan, B.J. (2011) Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent refugia. PLoS ONE 6, e21385.Google Scholar
Dickler, E., Theinert, C. & Rauleder, H. (2004) Cydia tenebrosana - a new pest in plum fruits? IOBC/WPRS Bulletin 27, 1317.Google Scholar
El-Sayed, A.M. (2014) The pherobase: database of insect pheromones and semiochemicals. Available online at: http://www.pherobase.com Google Scholar
EPPO (2007) Guidelines on Pest Risk Analysis: Decision-Support Scheme for Quarantine Pests PM5/3(3). European and Mediterranean Plant Protection Organization, Paris, France.Google Scholar
Excoffier, L. (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology 13, 853864.Google Scholar
Excoffier, L. & Lischer, H.E.L. (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrom oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google Scholar
Franck, P. & Timm, A.E. (2010) Population genetic structure of Cydia pomonella: a review and case study comparing spatiotemporal variation. Journal of Applied Entomology 134, 191200.CrossRefGoogle Scholar
Fuentes-Contreras, E., Espinoza, J.L., Lavandero, B. & Ramírez, C.C. (2008) Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile. Journal of Economic Entomology 101, 190198.CrossRefGoogle ScholarPubMed
Funk, W.C., Caminer, M. & Ron, S.R. (2012) High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences 279, 18061814.Google Scholar
Fu, Y.X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915925.Google Scholar
Gao, H., Zhao, Z.Y., Liang, J. & Wang, L.C. (2008) Current status and development history of apple planting and breeding in Shaanxi Province. Journal of Northwest Forestry University 23, 130133.Google Scholar
GraphPad Software (2007) GraphPad Prism, version 5.00. GraphPad Software, San Diego, CA.Google Scholar
Guerin, P.M., Arn, H., Buser, H.R., Charmillot, P., Toth, M. & Sziraki, G. (1986) Sex-pheromone of Grapholita funebrana occurrence of Z-8-tetradecenyl and Z-10-tetradecenyl acetate as secondary components source. Journal of Chemical Ecology 12, 13611368.Google Scholar
Gund, N.A., Wagner, A., Timm, A.E., Schulze-Bopp, S., Jehle, J.A., Johannesen, J. & Reineke, A. (2012) Genetic analysis of Cydia pomonella (Lepidoptera: Tortricidae) populations with different levels of sensitivity towards the Cydia pomonella granulovirus (CpGV). Genetica 140, 235247.Google Scholar
Hall, T. (2007) BioEdit 7.0. 9.0. Department of Microbiology, North Carolina State University.Google Scholar
Hebert, P.D., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences 270, 313321.Google Scholar
Hebert, P.D., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004 a) Ten species in one: DNA barcode reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator . Proceedings of the National Academy of Sciences of the United States of America 101, 1481214817.Google Scholar
Hebert, P.D., Stoeckle, M.Y., Zemlak, T.S. & Francis, C.M. (2004 b) Identification of birds through DNA barcodes. PLoS Biology 2, e312.Google Scholar
Horak, M., & Brown, R. L. (1991) Taxonomy and phylogeny. pp. 2348 in van der Geest, L.P.S., Evenhuis, H.H.), (Eds) Tortricid Pests: Their Biology, Natural Enemies and Control. Amsterdam, Elsevier.Google Scholar
Hrdý, I., Marek, J., Krampl, F., Kuldová, J. & Barabas, L. (1993) Distribution of the fruit tree pests Cydia molesta, Cydia funebrana and Anarsia lineatella (Lepidoptera: Tortricidae, Gelechiidae) in former Czecho Slovakia as recorded by pheromone traps. Acta Societatis Zoologicae Bohemicae 58, 5360.Google Scholar
Hrdý, I., Kocourek, F., Beranková, J. & Kuldová, J. (1996) Temperature models for predicting the flight activity population of Cydia funebrana (Lepidoptera: Tortricidae). Central European Journal of Entomology 93, 569578.Google Scholar
Jung, C.R., Ahn, J.J., Eom, H.S., Seo, J.H. & Kim, Y. (2012) Occurrence of Grapholita dimorpha in Korean pear orchards and cross-trapping of its sibling species, Grapholita molesta, to a pheromone lure. Korean Journal of Applied Entomology 51, 479484.Google Scholar
Jung, C.R., Jung, J.K. & Kim, Y. (2013) Effects of different sex pheromone compositions and host plants on the mating behavior of two Grapholita species. Journal of Asia-Pacific Entomology 16, 507512.CrossRefGoogle Scholar
Kang, Z.F., Zhang, F.Y., Sun, Q., Lu, X. & Guo, M.Z. (1989) The active of sex pheromone of Grapholita molesta used in Grapholita funebrana and its application of forecast and control. Chinese Bulletin of Entomology 26, 142145.Google Scholar
Kekkonen, M. & Hebert, P.D.N. (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources 14, 706715.Google Scholar
Kirk, H., Dorn, S. & Mazzi, D. (2013 a) Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecology 13, 12.CrossRefGoogle ScholarPubMed
Kirk, H., Dorn, S. & Mazzi, D. (2013 b) Molecular genetics and genomics generate new insights into invertebrate pest invasions. Evolutionary Applications 6, 842856.CrossRefGoogle ScholarPubMed
Komai, F. (1979) A new species of the genus Grapholita Treitschke from Japan allied to the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Applied Entomology and Zoology 14, 133136.Google Scholar
Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.Google Scholar
Li, B., Qin, Y.C., He, L. & Wu, X.M. (2008) The control of oriental fruit moth with sex pheromone dispenser and mixtures of sugar-acetic and acid-ethanol. Acta Phytophylacica Sinica 35, 285286.Google Scholar
Li, Y.T., Duan, X.L., Qiao, X.F., Li, X.Y., Wang, K., Men, Q.L. & Chen, M.H. (2015) Mitochondrial DNA revealed different genetic diversity of a newly invasive pest, Cydia pomonella (Lepidoptera: Tortricidae) in northeastern and northwestern China. Bulletin of Entomological Research 105, 485496.CrossRefGoogle Scholar
Meng, X.F., Shi, M.I.N. & Chen, X.X. (2008) Population genetic structure of Chilo suppressalis (Walker) (Lepidoptera: Crambidae): strong subdivision in China inferred from microsatellite markers and mtDNA gene sequences. Molecular Ecology 17, 28802897.Google Scholar
Moore, W.S. (1995) Inferring phylogenies from mtDNA variation: mitochondrial gene trees versus nuclear-gene trees. Evolution 49, 718726.Google Scholar
Najar-Rodriguez, A., Bellutti, N. & Dorn, S. (2013) Larval performance of the oriental fruit moth across fruits from primary and secondary hosts. Physiological Entomology 38, 6370.Google Scholar
Natale, D., Mattiacci, L., Hern, A., Pasqualini, E. & Dorn, S. (2003) Response of Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bulletin of Entomological Research 93, 335342.Google Scholar
Nguyen, P., Sýkorová, M., Šíchová, J., Kůta, V., Dalíková, M., Čapková Frydrychová, R., Neven, L.G., Sahara, K. & Marec, F. (2013) Neo-sex chromosomes and adaptive potential in tortricid pests. Proceedings of National Academy of Sciences of the United State of America 110, 6931–6396.Google Scholar
Nolan, D.V., Carpenter, S., Barber, J., Mellor, P.S., Dallas, J.F., Mordue Luntz, A.J. & Piertney, S.B. (2007) Rapid diagnostic PCR assays for members of the Culicoides obsoletus and Culicoides pulicaris species complexes, implicated vectors of bluetongue virus in Europe. Veterinary Microbiology 124, 8294.Google Scholar
Olenici, N., Capuse, I., Olenici, V., Oprean, I. & Mihalciuc, V. (2007) Non-target lepidopteran species in pheromone traps baited with attractants for several tortricid moths. Analele ICAS 50, 185202.Google Scholar
Paynter, Q., Gourlay, A.H., Oboyski, P.T., Fowler, S.V., Hill, R.L., Withers, T.M. & Hona, S. (2008) Why did specificity testing fail to predict the field host-range of the gorse pod moth in New Zealand? Biological Control 46, 453462.Google Scholar
Peakall, R. & Smouse, P.E. (2006) GenAlex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.Google Scholar
Pramual, P., Kuvangkadilok, C., Baimai, V. & Walton, C. (2005) Phylogeography of the black fly Simulium tani (Diptera: Simuliidae) from Thailand as inferred from mtDNA sequences. Molecular Ecology 14, 39894001.Google Scholar
Puillandre, N., Modica, M.V., Zhang, Y., Sirovich, L., Boisselier, M.C., Cruaud, C. & Samadi, S. (2012) Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21, 26712691.CrossRefGoogle ScholarPubMed
Rebijith, K.B., Asokan, R., Kumar, N.K.K., Krishna, V., Chaitanya, B.N. & Ramamurthy, V.V. (2013) DNA barcoding and elucidation of cryptic aphid species (Hemiptera: Aphididae) in India. Bulletin of Entomological Research 103, 601610.Google Scholar
Ramos-Onsins, S.E. & Rozas, J. (2002) Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19, 20922100.CrossRefGoogle ScholarPubMed
Rogers, A.R. & Harpending, H. (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology Evolution 9, 552569.Google Scholar
Rosetti, N. & Remis, M.I. (2012) Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the grasshopper Dichroplus elongatus . PLoS ONE 7, e40807.Google Scholar
Rothschild, G.H.L. & Vickers, R.A. (1991) Biology, ecology and control of the oriental fruit moth. pp. 389412 in (van der Geest, L.P.S., Evenhuis, H.H.) (Eds) Tortricid Pests: Their Biology, Natural Enemies and Control. Amsterdam, Elsevier.Google Scholar
Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Sezonlin, M., Dupas, S., Le Rü, B., Le Gall, P., Moyal, P., Calateyud, P.A. & Silvain, J.F. (2006) Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Molecular Ecology 15, 407420.Google Scholar
Silva-Brandao, K.L., Almeida, L.C., Moraes, S.S. & Consoli, F.L. (2013) Using population genetic methods to identify the origin of an invasive population and to diagnose cryptic subspecies of Telchin licus (Lepidoptera: Castniidae). Bulletin of Entomological Research 103, 89–87.Google Scholar
Simon, C., Prati, F., Beckenbach, A., Crespi, B. & Liu, H. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.Google Scholar
Slatkin, M. & Hudson, R.H. (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555562.Google Scholar
Svensson, G.P., Wang, H.L., Lassance, J., Anderbrant, O., Chen, G.F., Gregorsson, B. & Loefstedt, C. (2013) Assessment of genetic and pheromonal diversity of the Cydia strobilella species complex (Lepidoptera: Tortricidae). Systematic Entomology 38, 305315.Google Scholar
Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585595.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.CrossRefGoogle ScholarPubMed
Tooman, L.K., Rose, C.J., Carraher, C., Suckling, D.M., Paquette, S.R., Ledezma, L.A. & Newcomb, R.D. (2011) Patterns of mitochondrial haplotype diversity in the invasive pest Epiphyas postvittana (Lepidoptera: Tortricidae). Journal of Economic Entomology 104, 920932.Google Scholar
Toth, M., Sziraki, G., Szocs, G. & Saringer, E. (1991) A pheromone inhibitor for male Grapholitha funebrana Tr., and its use for increasing the specificity of the lure for G. molesta busck (Lepidoptera, Tortricidae). Agriculture Ecosystems & Environment 35, 6572.Google Scholar
Trewick, S.A. (2000) Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora). Molecular Ecology 9, 269281.Google Scholar
Troschel, F.H. (1850) Archive of Nature History. 16, 230.Google Scholar
USDA (1984) Pests not known to occur in the United States or of limited distribution, No. 49: Plum fruit moth, Whitehead, D.R. & Whittle, K. (Eds). pp. 112. Hyattsville, Maryland, USA, APHIS-PPQ.Google Scholar
Wang, F., Zhu, Y., Cai, D.Q., Ji, G.H., Ju, R.D. & Xu, Y. (2013) Comparison between sex pheromone and chemical agents in control effect against Grapholita molesta . Forest Pest and Disease 32, 2426.Google Scholar
Wei, S.J., Cao, L.J., Gong, Y.J., Shi, B.C., Wang, S., Zhang, F., Guo, X.J., Wang, Y.M. & Chen, X.X. (2015) Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Molecular Ecology 24, 40944111.Google Scholar
Woo, W.C. (1961) A new record of two species of fruit tree pests from north China. Acta Entomologica Sinica 10, 46.Google Scholar
Wu, S.X., Kang, Z.X. & Hu, J. (1983) Preliminary research on the morphological characteristics of Grapholita funebrana . Journal of Jilin Agricultural University 2, 711.Google Scholar
Yan, S.C., Liu, Y.Q. & Li, M.W. (1999) Grapholita dimorpha – a new record pest damaging fruit trees of China. Forest Pest and Disease 4, 1516.Google Scholar
Yang, C.Y., Jung, J.K., Han, K.S., Boo, K.S. & Yiem, M.S. (2002) Sex pheromone composition and monitoring of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) in Naju pear orchards. Journal of Asia-Pacific Entomology 5, 201207.Google Scholar
Yang, Z.F., Landry, J.F., Handfield, L., Zhang, Y.L., Alma Solis, M., Handfield, D. & Hebert, P.D. (2012) DNA barcoding and morphology reveal three cryptic species of Anania (Lepidoptera: Crambidae: Pyraustinae) in North America, all distinct from their European counterpart. Systematic Entomology 37, 686705.Google Scholar
Zheng, Y., Peng, X., Liu, G.M., Pan, H.Y., Dorn, S. & Chen, M.H. (2013) High genetic diversity and structured populations of the Oriental fruit moth in its range of origin. PLoS ONE 8, e78476.Google Scholar
Zheng, Y., Qiao, X.F., Wang, K., Dorn, S. & Chen, M.H. (2015) Population genetics affected by pest management using fruit-bagging: a case study with Grapholita molesta (Lepidoptera: Tortricidae) in China. Entomologia Experimentalis et Applicata 156, 117127.Google Scholar