Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T04:51:41.907Z Has data issue: false hasContentIssue false

Cyclocephala (Coleoptera: Scarabaeidae: Dynastinae) evolution in Lesser West Indies indicates a Northward colonization by C. tridentata

Published online by Cambridge University Press:  24 November 2011

T. Giannoulis
Affiliation:
Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece
A.-M. Dutrillaux
Affiliation:
Muséum National d'Histoire Naturelle, UMR 7205-OSEB, CNRS/MNHN, 16, rue Buffon, CP 39, 75005 Paris, France
C. Stamatis
Affiliation:
Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece
B. Dutrillaux
Affiliation:
Muséum National d'Histoire Naturelle, UMR 7205-OSEB, CNRS/MNHN, 16, rue Buffon, CP 39, 75005 Paris, France
Z. Mamuris*
Affiliation:
Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece
*
*Author for correspondence Fax: 00302410565290 E-mail: [email protected]

Abstract

A dual cytogenetic and molecular analysis was performed in four species of Cyclocepala (Coleoptera: Scarabaeidae: Dynastinae) from Lesser Antilles (Martinique, Dominica and Guadeloupe). Two species/sub-species, C. mafaffa grandis and C. insulicola, are endemic to Guadeloupe. They have their own non-polymorphic karyotype and a fairly homogeneous haplotype of the COI gene. C. melanocephala rubiginosa has a distinct karyotype. Its COI haplotype is homogeneous in Guadeloupe and heterogeneous in Martinique. Finally, C. tridentata has highly different karyotypes and haplotypes in the three islands. In Martinique, its karyotype, composed of metacentrics, is monomorphic while its haplotype is fairly heterogeneous. Both are close to those of other Cyclocephala and Dynastinae species, thus fairly ancestral. In Guadeloupe, its karyotype is highly polymorphic, with many acrocentrics, and its haplotype fairly homogeneous. Both are highly derived. In Dominica, both the karyotype and the haplotype represent intermediate stages between those of Martinique and Guadeloupe. We conclude that several independent colonization episodes have occurred, which excludes that C. insulicola is a vicariant form of C. tridentata in Guadeloupe. Both chromosome and COI gene polymorphisms clearly indicate a recent colonization with a northward direction for C. tridentata.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angus, R.B. (1982) Separation of two species standing as Helophorus aquaticus (L.) (Coleoptera, Hydrophylidae) by banded chromosome analysis. Systematic Entomology 7, 265281.CrossRefGoogle Scholar
Angus, R.B. (1988) A new sibling species of Helophorus F. (Coleoptera: Hydrophilidae) revealed by chromosome analysis and hybridisation experiments. Aquatic Insects 10, 171183.CrossRefGoogle Scholar
Brower, A.V.Z. (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 64916495.CrossRefGoogle ScholarPubMed
Brown, W.M. (1985) The mitochondrial genome of animals. pp. 95100in Macintyre, R.J.(Ed) Molecular Evolutionary Genetics. New York, USA, Plenum.CrossRefGoogle Scholar
Behura, S.K. (2006) Molecular marker systems in insects: current trends and future avenues. Molecular Ecology 15, 30873113.CrossRefGoogle ScholarPubMed
Cameron, S.L., Sullivan, J., Song, H., Miller, K.B. & Whiting, M.F. (2009) A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zoologica Scripta 38, 575590.CrossRefGoogle Scholar
Carisio, L., Cervella, P., Palestrini, C., DelPero, M. & Rolando, A. (2004) Biogeographical patterns of genetic differentiation in dung beetles of the genus Trypocopris (Coleoptera, Geotrupidae) inferred from mtDNA and AFLP analyses. Journal of Biogeography 31, 11491162.CrossRefGoogle Scholar
Caterino, M.S., Cho, S. & Sperling, F.A.H. (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annual Review of Entomology 45, 154.CrossRefGoogle ScholarPubMed
Chalumeau, F. (1983) Les Coléoptères scarabaeides des petites Antilles (Guadeloupe à Martinique). Paris, France, Lechevalier.Google Scholar
Cognato, A.I. & Sperling, F.A.H. (2000) Phylogeny of Ips DeGeer species (Coleoptera: Scolytidae) inferred from mitochondrial cytochrome oxidase 1 DNA sequences. Molecular Phylogenetics and Evolution 14, 445460.CrossRefGoogle Scholar
Darlington, P.J. (1957) Zoogeography, the Geographical Distribution of Animals. New York, USA, Wiley & Sons.Google Scholar
Dasmahapatra, K.K. & Mallet, J. (2006) DNA barcodes: recent successes and future prospects. Heredity 97, 254255.CrossRefGoogle ScholarPubMed
Dutrillaux, A.-M., Moulin, S. & Dutrillaux, B. (2006) Use of meiotic pachytene stage for karyotypic studies in insects. Chromosome Research 14, 549557.CrossRefGoogle ScholarPubMed
Dutrillaux, A.-M., Xie, H. & Dutrillaux, B. (2007) High chromosomal polymorphism and heterozygosity in Cyclocephala tridentata from Guadeloupe: Chromosome comparison with some other species of Dynastinae (Coleoptera: Scarabaeidae). Cytogenetic and Genome Research 119, 248254.CrossRefGoogle Scholar
Dutrillaux, A.-M., Mercier, J., Xie, H. & Dutrillaux, B. (2008) Etude chromosomique de seize espèces ou sous-espèçes de Cetoniini (Coleoptera: Scarabaeidae: Cetoniinae) d'Europe. Annales de la Société entomologique de France 44, 443450.CrossRefGoogle Scholar
Dutrillaux, A.-M., Pluot-Sigwalt, D. & Dutrillaux, B. (2010) (Ovo-)viviparity in the darkling beetle, Alegoria castelnaui (Tenebrionidae: Ulomini), from Guadeloupe. European Journal of Entomology 107, 481485.CrossRefGoogle Scholar
Endrödi, S. (1985) The Dynastinae of the World. Series Entomologica, Vol. 28. Dordrecht, The Netherlands, W. Junk Publishers.Google Scholar
Greenstone, M.H. (2006) Molecular methods for assessing insect parasitism. Bulletin of Entomological Research 96, 113.CrossRefGoogle ScholarPubMed
Hasegawa, M., Kishino, M. & Yano, T. (1985) Dating the human–ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160174.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2002) Biological identifications through DNA barcodes. Proceedings of the Royal Society, Series B 270, 313321.CrossRefGoogle Scholar
Hebert, P.D.N., Ratnasingham, S. & deWaard, J.R. (2003) Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B: Containing Papers of a Biological Character 270, S96S99.CrossRefGoogle Scholar
Huelsenbeck, J.P. & Ronquist, F. (2001) mrbayes, version 3.1: Bayesian inference of phylogeny. Bioinformatics 17, 754755.CrossRefGoogle Scholar
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.CrossRefGoogle ScholarPubMed
Lipscomb, D., Platnick, N. & Wheeler, Q.D. (2003) The intellectual content of taxonomy: a comment of DNA taxonomy. Trends in Ecology and Evolution 18, 6466.CrossRefGoogle Scholar
MacArthur, R.H. & Wilson, E.O. (1963) An equilibrium theory of insular zoogeography. Evolution 17, 373387.CrossRefGoogle Scholar
Moritz, C. & Cicero, C. (2004) DNA barcoding: promise and pitfalls. PLoS Biology 2, e354.CrossRefGoogle ScholarPubMed
Moura, R.C., Souza, M.J., Melo, N.F. & Lira-Neto, A.C. (2003) Karyotypic characterization of representatives from Melolonthinaae (Coleoptera: Scarabaeisae): Karyotypic analysis, banding and fluorescent in situ hybridization (FISH). Hereditas 138, 200206.CrossRefGoogle Scholar
Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphism. Proceedings of the National Academy of Sciences of the United States of America 86, 27662770.CrossRefGoogle Scholar
Papadopoulou, A., Anastasiou, I. & Vogler, A.P. (2010) Revisiting the Insect Mitochondrial Molecular Clock: The Mid-Aegean Trench Calibration. Molecular Biology and Evolution 27, 16591672.CrossRefGoogle ScholarPubMed
Posada, D. & Crandall, K.A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818.CrossRefGoogle ScholarPubMed
Richly, E. & Leister, D. (2004) NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution 21, 10811084.CrossRefGoogle ScholarPubMed
Ricklefs, R. & Bermingham, E. (2008) The West Indies as a laboratory of ecology and evolution. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 363, 23932413.CrossRefGoogle Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Stouthamer, R. (2006) Molecular methods for the identification of biological control agents at the species and strain level. pp. 187201in Bigler, F., Babendreier, D. & Kuhlmann, U. (Eds) Environmental Impact of Invertebrates for Biological Control of Arthropods. Wallingford, UK, CABI Publishing.Google Scholar
Swofford, D.L. (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, MA, USA, Sinauer Associates.Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Tautz, D., Arctander, P., Minelli, A., Thomas, R.H. & Vogler, A.P. (2003) A plea for DNA taxonomy. Trends in Ecology and Evolution 18, 7074.CrossRefGoogle Scholar
Vidal, O.R., Giacomozzi, R.O. & Riva, R. (1977) Los cromosomas de la subfamilia Dynastinae (Coleoptere, Scarabaeidae). I. Inversion pericentrica en Diloboderus abderus (Sturm) 1862. Physis 37, 303309.Google Scholar
Vidal, O.R. & Giacomozzi, R.O. (1978) Los cromosomas de la subfamilia Dynastinae (Coleoptere, Scarabaeidae). II. Las bandas C en Enema pan (Fabr.). Physis (Buenos Aires) 38, 113119.Google Scholar
Villalba, S., Lobo, J.M., Martín-Piera, F. & Zardoya, R. (2002) Phylogenetic relationships of iberian dung beetles (Coleoptera: Scarabaeinae): insights on the evolution of nesting behaviour. Journal of Molecular Evolution 55, 116126.CrossRefGoogle Scholar
Vitturi, R., Colomba, M., Volpe, N., Lannino, A. & Zunino, M. (2003) Evidence for male XO sex-chromosome system in Pentodon bidens punctatum (Coleoptera, Scarabaeoidea, Scarabaeidae). Genes & Genetic Systems 78, 427432.CrossRefGoogle ScholarPubMed
Will, K.W. & Rubinoff, D. (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20, 4755.CrossRefGoogle ScholarPubMed
Woods, C.A. (1989) The biogeography of West Indian rodents. pp. 741798in Woods, C.A.(Ed) Biogeography of the West Indies: Past, Present, and Future. Gainesville, FL, USA, Sandhill Crane.Google Scholar