Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T21:15:15.723Z Has data issue: false hasContentIssue false

Cuticular hydrocarbons discriminate cryptic Macrolophus species (Hemiptera: Miridae)

Published online by Cambridge University Press:  17 April 2012

C. Gemeno*
Affiliation:
Department of Crop and Forest Sciences, University of Lleida, 25198 Lleida, Spain
N. Laserna
Affiliation:
Department of Crop and Forest Sciences, University of Lleida, 25198 Lleida, Spain
M. Riba
Affiliation:
Department of Chemistry, University of Lleida, 25198 Lleida, Spain
J. Valls
Affiliation:
Biostatistics Unit. Biomedical Research Institute (IRBLLEIDA), 25198 Lleida, Spain
C. Castañé
Affiliation:
IRTA Entomology, carretera de Cabrils Km 2, 08348 Cabrils, Spain
O. Alomar
Affiliation:
IRTA Entomology, carretera de Cabrils Km 2, 08348 Cabrils, Spain
*
*Author for correspondence Fax:+34 973-702690 E-mail: [email protected]

Abstract

Macrolophus pygmaeus is commercially employed in the biological control of greenhouse and field vegetable pests. It is morphologically undistinguishable from the cryptic species M. melanotoma, and this interferes with the evaluation of the biological control activity of M. pygmaeus. We analysed the potential of cuticular hydrocarbon composition as a method to discriminate the two Macrolophus species. A third species, M. costalis, which is different from the other two species by having a dark spot at the tip of the scutellum, served as a control. Sex, diet and species, all had significant effects in the cuticular hydrocarbon profiles, but the variability associated to sex or diet was smaller than among species. Discriminant quadratic analysis of cuticular hydrocarbons confirmed the results of previous molecular genetic studies and showed, using cross-validation methods, that M. pygmaeus can be discriminated from M. costalis and M. melanotoma with prediction errors of 6.75% and 0%, respectively. Therefore, cuticular hydrocarbons can be used to separate M. pygmaeus from M. melanotoma reliably.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alomar, O., Goula, M. & Albajes, R. (2002) Colonization of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in northern Spain. Agriculture Ecosystems and Environment 89, 105115.CrossRefGoogle Scholar
Alomar, O., Riudavets, J. & Castañe, C. (2006) Macrolophus caliginosus in the biological control of Bemisia tabaci on greenhouse melons. Biological Control 36, 154162.Google Scholar
Athanassiou, C.G., Kavallieratos, N.G., Ragkou, V.S. & Buchelos, C.T. (2003) Seasonal abundance and spatial distribution of the predator Macrolophus costalis and its prey Myzus persicae on tobacco. Phytoparasitica 31, 818.Google Scholar
Bagnères, A.-G. & Wicker-Thomas, C. (2010) Chemical taxonomy with hydrocarbons. pp. 121162in Blomquist, G.J. & Bagnères, A.-G. (Eds) Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Blomquist, G.J., Nelson, D.R. & de Renobales, M. (1987) Chemistry, biochemistry, and physiology of insect cuticular lipids. Archives of Insect Biochemistry and Physiology 6, 227265.Google Scholar
Carlson, D.A., Ulrich, R.B. & Sutton, B.D. (1998) Elution patterns from capillary GC for methyl-branched alkanes. Journal of Chemical Ecology 24, 18451865.Google Scholar
Clements, K.M., Wiegmann, B.M., Sorenson, C.E., Smith, C.F., Neese, P.A. & Roe, R.M. (2000) Genetic variation in the Myzus persicae complex (Homoptera: Aphididae): evidence for a single species. Annals of the Entomological Society of America 93, 3146.CrossRefGoogle Scholar
Dall'Aglio-Holvorcem, C.G., Benson, W.W., Gilbert, L.E., Trager, J.C. & Trigo, J.R. (2009) Chemical tools to distinguish the fire ant species Solenopsis invicta and S. saevissima (Formicidae: Myrmicinae) in Southeast Brazil. Biochemical Systematics and Ecology 37, 442451.CrossRefGoogle Scholar
Drijfhout, F.P. & Groot, A.T. (2001) Close-range attraction in Lygocoris pabulinus (L.). Journal of Chemical Ecology 27, 11331149.Google Scholar
Drijfhout, F.P., Groot, A.T., Beek, T.A.V. & Visser, H. (2003) Mate location in green capsid bug, Lygocoris pabulinus. Entomologia Experimentalis et Applicatta 106, 7377.Google Scholar
Gomes, C.C.G., Trigo, J.R. & Erias, A.E. (2008) Sex pheromone of the American warble fly, Dermatobia hominis: The role of cuticular hydrocarbons. Journal of Chemical Ecology 34, 636646.Google Scholar
Guerrieri, F.J., Nehring, V., Jorgensen, C.G., Nielsen, J., Galizia, C.G. & d'Ettorre, P. (2009) Ants recognize foes, not friends. Proceedings of the Royal Society, Series B: Biological Sciences 276, 24612468.Google Scholar
Hand, D.J. & Taylor, C.C. (1987) Multivariate Analysis of Variance and Repeated Measures. London, UK, Chapman and Hall.Google Scholar
Hansen, D.L., Brödsgaard, H.F. & Enkegaard, A. (1999) Life table characteristics of Macrolophus caliginosus preying upon Tetranychus urticae. Entomologia Experimentalis et Applicatta 93, 269275.Google Scholar
Howard, R.H. & Blomquist, G.J. (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology 50, 371393.Google Scholar
Jackson, L.L. (1983) Cuticular hydrocarbons of the milkweed bug, Oncopeltus fasciatus by age and sex. Insect Biochemistry 13, 1925.Google Scholar
Josifov, M. (1992) Zur Taxonomie der paläarktischen Macrolophus-Arten (Insecta, Heteroptera: Miridae). Reichenbachia 29, 14.Google Scholar
Juárez, M.P. & Blomquist, G.J. (1993) Cuticular hydrocarbons of Triatoma infestans and T. mazzotti. Comparative Biochemistry and Physiology, Part B: Biochemistry & Molecular Biology 106, 667674.CrossRefGoogle Scholar
Juárez, M.P. & Fernández, G.C. (2007) Cuticular hydrocarbons of triatomites. Comparative Biochemistry and Physiology,Part A: Molecular & Integrative Physiology 147, 711730.Google Scholar
Juárez, M.P., Blomquist, G.J. & Schofield, C.J. (2001) Hydrocarbons of Rhodnius prolixus, a Chagas disease vector. Comparative Biochemistry and Physiology, Part B: Biochemistry & Molecular Biology 129, 733746.Google Scholar
Kerzhner, I.M. & Josifov, M. (1999) Cimicomorpha II: Miridae. pp. 7384in Aukema, B. & Rieger, C. (Eds) Catalogue of the Heteroptera of the Palaearctic Region, vol. 3. Wageningen, The Netherlands, Nederlandse Entomologische Vereniging.Google Scholar
Liang, D. & Silverman, J. (2000) You are what you eat: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87, 412416.Google Scholar
Lucas, E. & Alomar, O. (2002) Impact of Macrolophus caliginosus presence on damage production by Dicyphus tamaninii (Heteroptera: Miridae) on tomato fruits. Journal of Economic Entomology 95, 11231129.Google Scholar
Margaritopoulos, J.T., Tsitsipis, J.A. & Perdikis, D.C. (2003) Biological characteristics of the mirids Macrolophus costalis and Macrolophus pygmaeus preying on the tobacco form of Myzus persicae (Hemiptera: Aphididade). Bulletin of Entomological Research 93, 3945.Google Scholar
Martin, S.J., Zhong, W.H. & Drijfhout, F.P. (2009) Long-term stability of hornet cuticular hydrocarbons facilitates chemotaxonomy using museum specimens. Biological Journal of the Linnean Society 96, 732737.CrossRefGoogle Scholar
Martínez-Cascales, J.I., Cenis, J.L., Cassis, G. & Sanchez, J.A. (2006) Species identity of Macrolophus melanotoma (Costa 1853) and Macrolophus pygmaeus (Rambur 1839) (Insecta: Heteroptera: Miridae) based on morphological and molecular data and bionomic implications. Insect Systematics and Evolution 37, 385404.Google Scholar
Montserrat, M., Albajes, R. & Castañé, C. (2000) Functional response of four Heteroptera predators preying on greenhouse whitefly and western flower thrips. Environmental Entomology 29, 10751082.Google Scholar
Mullen, S.P., Millar, J.G., Schal, C. & Shaw, K.L. (2008) Identification and characterization of cuticular hydrocarbons from a rapid species radiation of Hawaiian swordtailed crickets (Gryllidae: Trigonidiinae: Laupala). Journal of Chemical Ecology 34, 198204.Google Scholar
Nakabou, M. & Ohno, T. (2001) Identification of Orius spp. by cuticular hydrocarbons Japanese Journal of Applied Entomology and Zoology 45, 1821.Google Scholar
Perdikis, D.C., Margaritopoulos, J.T., Stamatis, C., Mamuris, Z., Lykouressis, D.P., Tsitsipis, J.A. & Pekas, A. (2003) Discrimination of the closely related biocontrol agents Macrolophus melanotoma (Hemiptera: Miridae) and M. pygmaeus using mitochondrial DNA analysis. Bulletin of Entomological Research 93, 507514.Google Scholar
R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, available online at http://www.R-project.org.Google Scholar
Riudavets, J. & Castañé, C. (1998) Identification and evaluation of native predators of Frankliniella occidentalis (Thysanoptera, Thripidae) in the Mediterranean. Environmental Entomology 27, 8693.Google Scholar
Thomas, M.L. & Simmons, L.W. (2008) Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae). Journal of Insect Physiology 54, 10811089.Google Scholar
van den Dool, H. & Kratz, P.D. (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography 11, 463471.Google Scholar
Supplementary material: File

Gemeno supplementary material

Data.zip

Download Gemeno supplementary material(File)
File 35 KB