Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T20:31:08.522Z Has data issue: false hasContentIssue false

Composition of cuticular lipids in the pteromalid wasp Lariophagus distinguendus is host dependent

Published online by Cambridge University Press:  17 April 2012

S. Kühbandner
Affiliation:
Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
K. Hacker
Affiliation:
Institute for Zoology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
S. Niedermayer
Affiliation:
Institute for Zoology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
J.L.M. Steidle
Affiliation:
Institute for Zoology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
J. Ruther*
Affiliation:
Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
*
*Author for correspondence Fax: +49-941 943 5583 E-mail: [email protected]

Abstract

The insect cuticle is covered by a thin layer of hydrocarbons not only preventing desiccation but also playing an important role in the sexual communication of several species. In the pteromalid wasp Lariophagus distinguendus, a parasitoid of grain infesting beetles, female cuticular hydrocarbons (CHCs) elicit male courtship behaviour. We analyzed the CHC profiles of male and female L. distinguendus wasps reared on different beetle hosts by coupled gas chromatography- mass spectrometry (GC-MS). Statistical analysis of the data revealed significant differences between strains reared on different hosts, while spatially isolated strains reared on the same host produced similar profiles. CHC profiles of parasitoids reared on Stegobium paniceum were statistically distinguishable from those of wasps reared on all other hosts. A host shift from Sitophilus granarius to S. paniceum resulted in distinguishable CHC profiles of L. distinguendus females after only one generation. Considering the role of CHCs as contact sex pheromones, our data suggest that host shifts in parasitic wasps might lead to reproductive isolation of host races due to the modification of the cuticular semiochemistry.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagnères, A.G. & Blomquist, G.J. (2010) Site of synthesis, mechanism of transport and selective deposition of hydrocarbons. pp. 7599in Blomquist, G.J. & Bagnères, A.G. (Eds) Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Behmer, S.T. (2006) Insect dietary needs: plants as food for insects. pp. 14in Goodman, R.M. (Ed.) Encyclopedia of Plant and Crop Science. New York, USA, Marcel Dekker Publishers.Google Scholar
Blomquist, G.J. (2010) Biosynthesis of cuticular hydrocarbons. pp. 3552in Blomquist, G.J. & Bagnères, A.G. (Eds) Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Blomquist, G.J. & Bagnères, A.G. (2010) Introduction: history and overview of insect hydrocarbons. pp. 318in Blomquist, G.J. & Bagnères, A.G. (Eds) Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Blomquist, G.J. & Jackson, L.L. (1973) Incorporation of labelled dietary n-alkanes into cuticular lipids of the grasshopper Melanoplus sanguinipes. Journal of Insect Physiology 19, 16391647.CrossRefGoogle Scholar
Carlson, D.A., Bernier, U.R. & Sutton, B.D. (1998) Elution patterns from capillary GC for methyl-branched alkanes. Journal of Chemical Ecology 24, 18451865.CrossRefGoogle Scholar
Etges, W.J., Veenstra, C.L. & Jackson, L.L. (2006) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VII. Effect of larval dietary fatty acids on adult epicuticular hydrocarbons. Journal of Chemical Ecology 32, 26292646.CrossRefGoogle ScholarPubMed
Francis, G.W. & Velant, K. (1981) Alkylthiolation for the determination of double-bond position in linear alkanes. Journal of Chromatography 219, 379384.CrossRefGoogle Scholar
Ferveur, J.F. & Cobb, M. (2010) Behavioral and evolutionary roles of cuticular hydrocarbons in Diptera. pp. 325344in Blomquist, G.J. & Bagnères, A.G. (Eds) Insect Hydrocarbons. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Geiselhardt, S., Otte, T. & Hilker, M. (2009) The role of cuticular hydrocarbons in male mating behavior of the mustard leaf beetle, Phaedon cochleriae. Journal of Chemical Ecology 35, 11621171.CrossRefGoogle Scholar
Gibbs, A.G. (2002) Lipid melting and cuticular permeability: new insights into an old problem. Journal of Insect Physiology 48, 391400.CrossRefGoogle ScholarPubMed
Ginzel, M.D. (2010) Hydrocarbons as contact pheromones of longhorned beetles. pp. 375389in Blomquist, G.J. & Bagnères, A.G. (Eds) Insect Hydrocarbons. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9 pp.Google Scholar
Howard, R.W. (1993) Cuticular hydrocarbons and chemical communication. pp. 179226in Stanly-Samuelson, D.W. & Nelson, D.R. (Eds) Insect Lipids. Chemistry, Biochemistry and Biology. Lincoln, NE, USA, University of Nebraska Press.Google Scholar
Howard, R.W. (2001) Cuticular hydrocarbons of adult Pteromalus cerealellae (Hymenoptera: Pteromalidae) and two larval hosts, angoumois grain moth (Lepidoptera: Gelechiidae) and cowpea weevil (Coleoptera: Bruchidae). Annals of the Entomological Society of America 94, 152158.CrossRefGoogle Scholar
Howard, R.W. & Infante, F. (1996) Cuticular hydrocarbons of the host-specific ectoparasitoid Cephalonomia stephanoderis (Hymenoptera: Bethylidae) and its host the coffee berry borer (Coleoptera: Scolytidae). Annals of the Entomological Society of America 8, 700709.CrossRefGoogle Scholar
Howard, R.W. & Liang, Y. (1993) Cuticular hydrocarbons of winged and wingless morphs of the ectoparasitoid Choetospila elegans Westwood (Hymenoptera: Pteromalidae) and its host, larval lesser grain borer (Rhyzopertha dominica) (Coleoptera: Bostrichidae). Comparative Biochemistry and Physiology B 106, 407414.CrossRefGoogle Scholar
Howard, R.W. & Perez-Lachaud, G. (2002) Cuticular hydrocarbons of the ectoparasitic wasp Cephalonomia hyalinipennis (Hymenoptera: Bethylidae) and its alternative host, the stored product pest Caulophilus oryzae (Coleoptera: Curculionidae). Archives of Insect Biochemistry and Physiology 50, 7584.CrossRefGoogle ScholarPubMed
Landolt, P.J. & Phillips, T.W. (1997) Host plant influences on sex pheromone behavior of phytophagous insects. Annual Review of Entomology 42, 371391.CrossRefGoogle ScholarPubMed
Lelito, J.P., Boroczky, K., Jones, T.H., Fraser, I., Mastro, V.C., Tumlinson, J.H. & Baker, T.C. (2009) Behavioral evidence for a contact sex pheromone component of the emerald ash borer, Agrilus planipennis Fairmaire. Journal of Chemical Ecology 35, 104110.CrossRefGoogle ScholarPubMed
Liebig, J. (2010) Hydrocarbon profiles indicate fertility and dominance status in ant, bee, and wasp colonies. pp. 245279in Blomquist, G.J. & Bagnères, A.G. (Eds) Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge, UK, Cambridge University Press.Google Scholar
Lockey, K.H. (1988) Lipids of the insect cuticle: origin composition and function. Comparative Biochemistry and Physiology, Part B: Biochemistry & Molecular Biology 89B, 595645.CrossRefGoogle Scholar
Mant, J., Brandli, C., Vereecken, N.J., Schulz, S., Francke, W. & Schiestl, F.P. (2005) Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata. Journal of Chemical Ecology 31, 17651787.CrossRefGoogle ScholarPubMed
Nelson, D.R. (1993) Methyl-branched lipids in insects. pp. 271315in Stanley-Samuelson, D.W. & Nelson, D.R. (Eds) Insect Lipids: Chemistry, Biochemistry and Biology. Lincoln, NE, USA, University of Nebraska Press.Google Scholar
Peterson, M.A., Dobler, S., Larson, E.L., Juárez, D., Schlarbaum, T., Monsen, K.J. & Francke, W. (2007) Profiles of the cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera: Chrysomelidae). Chemoecology 17, 8796.CrossRefGoogle Scholar
Rundle, H.D., Chenoweth, S.F., Doughty, P. & Blows, M.W. (2005) Divergent selection and the evolution of signal traits and mating preferences. PLoS Biology 3, 19881995.CrossRefGoogle ScholarPubMed
Ruther, J. & Steiner, S. (2008) Costs of female odour in males of the parasitic wasp Lariophagus distinguendus (Hymenoptera: Pteromalidae). Naturwissenschaften 95, 547552.CrossRefGoogle ScholarPubMed
Ruther, J., Döring, M. & Steiner, S. (2011) Cuticular hydrocarbons as contact sex pheromone in the parasitoid Dibrachys cavus. Entomologia Experimentalis et Applicata 140, 5968.CrossRefGoogle Scholar
Schiestl, F.P., Ayasse, M., Paulus, H.F., Löfstedt, C., Hansson, B.S., Ibarra, F. & Francke, W. (2000) Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. Journal of Comparative Physiology A 186, 567574.CrossRefGoogle ScholarPubMed
Sharon, G., Segal, D., Ringo, J.M., Hefetz, A., Zilber-Rosenberg, I. & Rosenberg, E. (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 107, 2005120056.CrossRefGoogle ScholarPubMed
Silk, P.J., Ryall, K., Lyons, D.B., Sweeny, J. & Wu, J. (2009) A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Naturwissenschaften 96, 601608.CrossRefGoogle ScholarPubMed
Singer, T.L. (1998) Roles of hydrocarbons in the recognition systems of insects. American Zoologist 38, 394405.CrossRefGoogle Scholar
Steidle, L.M. & Schöller, M. (1997) Olfactory host location and learning in the granary weevil parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). Journal of Insect Behavior 10, 331342.CrossRefGoogle Scholar
Steiner, S., Steidler, J.L.M. & Ruther, J. (2005) Female sex pheromone in immature insect males – a case of pre-emergence chemical mimicry? Behavioral Ecology and Sociobiology 58, 111120.CrossRefGoogle Scholar
Steiner, S., Herrmann, N. & Ruther, J. (2006) Characterization of a female courtship pheromone in the parasitoid Nasonia vitripennis. Journal of Chemical Ecology 32, 27772788.CrossRefGoogle ScholarPubMed
Steiner, S., Mumm, R. & Ruther, J. (2007) Courtship pheromones in parasitic wasps: comparison of bioactive and incactive cuticular hydrocarbon profiles by discriminant analysis. Journal of Chemical Ecology 32, 825838.CrossRefGoogle Scholar
Sugeno, W., Hori, M. & Matsuda, K. (2006) Identification of the contact sex pheromone of Gastrophysa atrocyanea (Coleoptera: Chrysomelidae). Applied Entomology and Zoology 41, 296–276.CrossRefGoogle Scholar
Sullivan, B.T. (2002) Evidence for a sex pheromone in bark beetle parasitoid Roptrocerus xylophagorum. Journal of Chemical Ecology 28, 10451063.CrossRefGoogle ScholarPubMed
Syvertsen, T.C., Jackson, L.L., Blomquist, G.J. & Vinson, S.B. (1995) Alkadienes mediating courtship in the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). Journal of Chemical Ecology 21, 19711989.CrossRefGoogle Scholar
Tillmann, J.A., Seybold, S.J., Jurenka, R.A. & Blomquist, G.J. (1999) Insect pheromones-an overview of biosynthesis and endocrine regulation. Insect Biochemistry and Molecular Biology 29, 481514.CrossRefGoogle Scholar
van Den Dool, H. & Kratz, P. (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography 11, 463471.CrossRefGoogle Scholar
Visser, B., Le Lann, C., den Blanken, F.J., Harvey, J.A., van Alphen, J.J.M. & Ellers, J. (2010) Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proceedings of the National Academy of Sciences of the USA 107, 86778682.CrossRefGoogle ScholarPubMed
Wicker-Thomas, C. (2007) Pheromonal communication involved in courtship behavior in Diptera. Journal of Insect Physiology 53, 10891100.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Kühbandner supplementary material

Appendix.pdf

Download Kühbandner supplementary material(PDF)
PDF 465.9 KB