Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T18:10:32.026Z Has data issue: false hasContentIssue false

The chemical inhibition of feeding by phytophagous insects: a review

Published online by Cambridge University Press:  10 July 2009

R. F. Chapman
Affiliation:
Centre for Overseas Pest Research, College House, Wrights Lane, London W8 5SJ

Abstract

Chemical inhibition of feeding has been studied in detail for only a few insect species, but inhibitory chemicals play a considerable part in host-plant selection by a wide range of phytophagous insects from several orders. Many different chemicals are involved, some of them amongst the normal constituents of plants. A few have a general effect, preventing feeding by all the insects which have so far been tested, but the majority are effective only against some species.

Inhibition may function by blocking the input from receptors normally responding to phagostimulants or by stimulating specific ‘deterrent’ cells. The former may have a general effect on all insects, but chemicals in the latter category will only be effective if the insect has neurones capable of responding to them. Hence these will have more specific effects.

Inhibitory chemicals may be applied to plants in the same way as insecticides, their advantage being that the parasite/predator complex of species not feeding directly on the plant will be unharmed. An alternative approach is to breed resistant varieties of plants by selecting for inhibitory attributes. Although many varieties of crops are known which are insect-resistant, the basis of the resistance is generally unknown. A more thorough understanding of the mechanisms involved in inhibition of feeding by chemicals would enable a more logical approach to be made to the development of resistant plants.

Type
Review Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abushama, F. T. (1968). Food-plant selection by Poecilocerus hieroglyphicus (Klug) (Acrididae: Pyrgomorphinae) and some of the receptors involved.—Proc. R. ent. Soc. Lond. (A) 43, 96104.Google Scholar
Akeson, W. R., Haskins, F. A. & Gorz, H. J. (1969). Sweetclover-weevil feeding deterrent B: isolation and identification.—Science, N.Y. 163, 293294.Google Scholar
Akeson, W. R., Haskins, F. A., Gorz, H. J. & Manglitz, G. R. (1970). Feeding response of the sweetclover weevil to various sugars and related compounds.—J. econ. Ent. 63, 10791080.CrossRefGoogle Scholar
Akeson, W. R., Manglitz, G. R., Gorz, H. J. & Haskins, F. A. (1967). A bioassay for detecting compounds which stimulate or deter feeding by the sweet-clover weevil.—J. econ. Ent. 60, 10821084.CrossRefGoogle Scholar
Ascher, K. R. S. & Nissim, S. (1964). Organotin compounds and their potential use in insect control.—Wld Rev. Pest Contr. 3, 188211.Google Scholar
Ascher, K. R. S. & Nissim, S. (1965). Quantitative aspects of antifeeding: comparing ‘antifeedants’ by assay with P. litura.—Int. Pest Contr. 7 (4), 21, 2324.Google Scholar
Ascher, K. R. S. & Rones, G. (1964). Fungicide has residual effect on larval feeding.—Int. Pest Contr. 6 (3), 68.Google Scholar
Beck, S. D. (1956). Nutrition of the European corn borer, Pyrausta nubilalis (Hbn.). IV. Feeding reactions of first instar larvae.—Ann. ent. Soc. Am. 49, 399405.CrossRefGoogle Scholar
Beck, S. D. (1960). The European corn borer, Pyrausta nubilalis (Hubn.), and its principal host plant. VII. Larval feeding behaviour and host plant resistance.—Ann. ent. Soc. Am. 53, 206212.CrossRefGoogle Scholar
Beck, S. D. (1965). Resistance of plants to insects.—A. Rev. Ent. 10, 207232.CrossRefGoogle Scholar
Beck, S. D. & Hanec, W. (1958). Effect of amino acids on feeding behaviour of the European corn borer, Pyrausta nubilalis (Hübn.).—J. Insect Physiol. 2, 8596.CrossRefGoogle Scholar
Beck, S. D., Kaske, E. T. & Smissman, E. E. (1957). Quantitative estimation of the resistance factor, 6-methoxybenzoxazolinone, in corn plant tissue.—J. agric. Fd Chem. 5, 933935.CrossRefGoogle Scholar
Bernays, E. A. & Chapman, R. F. (1970). Experiments to determine the basis of food selection by Chorthippus parallelus (Zetterstedt) (Orthoptera: Acrididae) in the field.—J. Anim. Ecol. 39, 761776.CrossRefGoogle Scholar
Bernays, E. A. & Chapman, R. F. (1974). Regulation of food intake by acridids. In Barton Browne, L. (Ed.). Experimental analysis of insect behaviour. 4859. Berlin, Springer Verlag.CrossRefGoogle Scholar
Bernays, E. A., Chapman, R. F., Horsey, J. & Leather, E. (1974). The inhibitory effect of seedling grasses on feeding and survival of Acridids (Orthoptera).—Bull. ent. Res. 64, 413420).CrossRefGoogle Scholar
Bhatia, D. R. & Sikka, H. L. (1957). Some striking cases of food preference by the desert locust (Schistocerca gregaria Forsk.).—Indian J. Ent. 18, 205211.Google Scholar
Blaney, W. M. (1974). Electrophysiological responses of the terminal sensilla on the maxillary palps of Locusta migratoria (L.) to some electrolytes and non-electrolytes.—J. exp. Biol. 60, 275293.CrossRefGoogle ScholarPubMed
Branson, T. F. (1972). Resistance to the corn leaf aphid, in the grass tribe Maydeae.—J. econ. Ent. 65, 195196.CrossRefGoogle Scholar
Brett, C. H., McCombs, C. L., Henderson, W. R. & Rudder, J. D. (1965). Carbohydrate concentration as a factor in the resistance of squash varieties to the pickleworm.—J. econ. Ent. 58, 893896.CrossRefGoogle Scholar
Brinley, F. J. (1926). Insecticidal value of certain war chemicals as tested on the tent caterpillar.—J. agric. Res. 33, 177182.Google Scholar
Buhr, H. (1954). Beobachtungen über Parasitenbefall an Pfropfungen und Chimären von Pflanzen.—Züchter 24, 185193.CrossRefGoogle Scholar
Bullock, H. R. & Wolfenbarger, D. A. (1968). Antifeeding effect of DDT on bollworm and tobacco budworm larvae.—J. econ. Ent. 61, 17601761.Google Scholar
Butterworth, J. H. & Morgan, E. D. (1968). Isolation of a substance that suppresses feeding in locusts.—Chem. Commun. 1968 no. 1, 2324.Google Scholar
Butterworth, J. H. & Morgan, E. D. (1971). Investigation of the locust feeding inhibition of the seeds of the neem tree, Azadirachta indica.—J. Insect Physiol. 17, 969977.Google Scholar
Butterworth, J. H., Morgan, E. D. & Percy, G. R. (1972). The structure of azadirachtin; the functional groups.—J. chem. Soc. Perkin Transactions I, no. 19, 24452450.Google Scholar
Byrne, H. D., Blickenstaff, C. C., Huggans, J. L., Steinhauer, A. L. & Vandenburgh, R. S. (1967). Laboratory studies of factors determining host plant selection by the alfalfa weevil, Hypera postica (Gyllenhal).—Bull. Md agric. Exp. Stn no. 4, 147, 27 pp.Google Scholar
Byrne, H. D. & Steinhauer, A. L. (1966). The attraction of the alfalfa weevil, Hypera postica (Coleoptera: Curculionidae), to alfalfa.—Ann. ent. Soc. Am. 59, 303309.Google Scholar
Chauvin, R. (1946). Sur la substance qui, dans les feuilles de Melia azedarach, repousse les criquets.—C. r. hebd. Séanc. Acad. Sci., Paris 222, 412414.Google Scholar
Chin, C.-T. (1950). Studies on the physiological relations between the larvae of Leptinotarsa decemlineata Say and some solanaceous plants.—Tijdschr. Plziekt. 56, 188.Google Scholar
Coaker, T. H. & Finch, S. (1973). The association of the cabbage rootfly with its food and host plants.—Symp. R. entomol. Soc. Lond. 6, 119128.Google Scholar
Dahlman, D. L. & Hibbs, E. T. (1967). Responses of Empoasca fabae (Cicadellidae: Homoptera) to tomatine, solanine, leptine 1, tomatidine, solanidine and demissidine.—Ann. ent. Soc. Am. 60, 732740.Google Scholar
Dethier, V. G. (1937). Gustation and olfaction in lepidopterous larvae.—Biol. Bull. mar. biol. Lab., Woods Hole 72, 723.Google Scholar
Dethier, V. G. (1939). Table thresholds in lepidopterous larvae.—Biol. Bull. mar. biol. Lab., Woods Hole 76, 325329.CrossRefGoogle Scholar
Dethier, V. G. (1963). The physiology of insect senses.—266 pp. London, Methuen.CrossRefGoogle Scholar
Dethier, V. G. (1973). Electrophysdological studies of gustation in lepidopterous larvae. II. Taste spectra in relation to food plants discrimination.—J. comp. Physiol. 82, 103134.Google Scholar
Dethier, V. G., Barton Browne, L. & Smith, C. N. (1960). The designation of chemicals in terms of the responses they elicit from insects.—J. econ. Ent. 53, 134136.CrossRefGoogle Scholar
De Wilde, J. (1958). Host plant selection in the Colorado beetle larva (Leptinotarsa decemlineata Say). (An ethological approach to food finding in insects.)Entomologia exp. appl. 1, 1422.CrossRefGoogle Scholar
Dimetry, N. Z. (1972). Further studies on the host plant preference of Spodoptera littoralis Boisd. (Lepid., Noctuidae).—Z. angew. Ent. 71, 350355.Google Scholar
Eisner, T. (1964). Catnip: its raison d'être.—Science, N.Y. 146, 13181320.CrossRefGoogle ScholarPubMed
Findlay, J. B. R. (1970). Laboratory studies on the effects of triphenyltin acetate and triphenyltin hydroxide on the stages in the life-cycle of Spodoptera littoralis (Bois).—Phytophylactica 2, 9196.Google Scholar
Fleming, W. E. & Baker, F. E. (1936). Derris as a Japanese beetle repellent and insecticide.—J. agric. Res. 53, 197207.Google Scholar
Fraenkel, G. (1969). Evaluation of our thoughts on secondary plant substances.—Entomologia exp. appl. 12, 473486.CrossRefGoogle Scholar
Fraenkel, G., Nayar, J., Nalbandov, O. & Yamamoto, R. T. (1960). Further investigations into the chemical basis of the insect-hostplant relationship.—Verh. XI. int. Kongr. Ent., Wien, 1960 3, 122126.Google Scholar
Frings, H. (1945). Gustatory rejection thresholds for the larvae of the cecropia moth, Samia cecropia (Linn.).—Biol. Bull. mar. biol. Lab., Woods Hole 88, 3743.CrossRefGoogle Scholar
Frings, H. (1948). A contribution to the comparative physiology of contact chemoreception.—J. comp. physiol. Psychol. 41, 2534.Google Scholar
Gentile, A. G. & Stoner, A. K. (1968). Resistance in Lycopersicon spp. to the tobacco flea beetle.—J. econ. Ent. 61, 13471349.CrossRefGoogle Scholar
Georghiou, G. P. & Metcalf, R. L. (1962). Carbamate insecticides: comparative insect toxicity of Sevin, Zectran, and other new materials.—J. econ. Ent. 55, 125127.CrossRefGoogle Scholar
Gilbert, B. L., Baker, J. E. & Norris, D. M. (1967). Juglone (5-hydroxy-l,4-naphthoquinone) from Carya ovata, a deterrent to feeding by Scolytus multistriatus.—J. Insect Physiol. 13, 14531459.CrossRefGoogle Scholar
Gilbert, B. L. & Norris, D. M. (1968). A chemical basis for bark beetle (Scolytus) distinction between host and non-host trees.—J. Insect Physiol. 14, 10631068.Google Scholar
Gill, J. S. (1972). Studies on insect feeding deterrents with special reference to the fruit extracts of the neem tree, Azadirachta indica A. Juss.—Ph.D. thesis, University of London.Google Scholar
Gill, J. S. & Lewis, C. T. (1971). Systemic action of an insect feeding deterrent.—Nature, Lond. 232, 402403.CrossRefGoogle ScholarPubMed
Goodhue, D. (1963). Some differences in the passage of food through the intestines of the desert and migratory locusts.—Nature, Lond. 200, 288289.Google Scholar
Goodhue, R. D. (1962). The effects of stomach poisons on the desert locust.—Ph.D. thesis, University of London.Google Scholar
Gorz, H. J., Haskins, F. A. & Manglitz, G. R. (1972). Effect of coumarin and related compounds on blister beetle feeding in sweetclover.—J. econ. Ent. 65, 16321635.CrossRefGoogle Scholar
Goyal, R. S., Gulati, K. C., Sarup, P., Kidwal, M. A. & Singh, D. S. (1971). Biological activity of various alcohol extractives and isolates of neem (Azadirachta indica) seed cake against Rhopalosiphum nympheae (Linn.) and Schistocerca gregaria Forsk.—Indian J. Ent. 33, 6771.Google Scholar
Granich, M. S., Halpern, B. P. & Eisner, T. (1974). Gymnemic acids: secondary plant substances of dual defensive action?J. Insect Physiol. 20, 435439.Google Scholar
Gupta, P. D. & Thorsteinson, A. J. (1960 a). Food plant relationships of the diamond-back moth (Plutella maculipennis (Curt.)). I. Gustation and olfaction in relation to botanical specificity of the larva.—Entomologia exp. appl. 3, 241250.CrossRefGoogle Scholar
Gupta, P. D. & Thorsteinson, A. J. (1960 b). Food plant relationships of the diamond-back moth (Plutella maculipennis (Curt.)). II. Sensory regulation of oviposition of the adult female.—Entomologia exp. appl. 3, 305314.Google Scholar
Guss, P. L. & Branson, T. F. (1972). The use of 75Se in feeding studies with the corn leaf aphid (Hemiptera (Homoptera) Aphididae).—Ann. ent. Soc. Am. 65, 303306.Google Scholar
Guy, H. G. & Dietz, H. F. (1939). Further investigations with Japanese beetle repellents.—J. econ. Ent. 32, 248252.CrossRefGoogle Scholar
Harley, K. L. S. & Thorsteinson, A. J. (1967). The influence of plant chemicals on the feeding behaviour, development, and survival of the two-striped grasshopper, Melanoplus bivittatus (Say), Acrididae: Orthoptera.—Can. J. Zool. 45, 305319.Google Scholar
Haskell, P. T. & Mordue (Luntz), J. A. (1969). The role of mouthpart receptors in the feeding behaviour of Schistocerca gregaria.—Entomologia exp. appl. 12, 591610.CrossRefGoogle Scholar
Haskell, P. T. & Schoonhoven, L. M. (1969). The function of certain mouth part receptors in relation to feeding in Schistocerca gregaria and Locusta migratoria migratorioides.—Entomologia exp. appl. 12, 423440.Google Scholar
Hsiao, T. H. (1969). Chemical basis of host selection and plant resistance in oligophagous insects.—Entomologia exp. appl. 12, 777788.Google Scholar
Hsiao, T. H. & Fraenkel, G. (1968 a). Isolation of phagostimulative substances from the host plant of the Colorado potato beetle.—Ann. ent. Soc. Am. 61, 476484.CrossRefGoogle Scholar
Hsiao, T. H. & Fraenkel, G. (1968 b). The role of secondary plant substances in the food specificity of the Colorado potato beetle.—Ann. ent. Soc. Am. 61, 485493.CrossRefGoogle Scholar
Hsiao, T. H. & Fraenkel, G. (1968 c). Selection and specificity of the Colorado potato beetle for solanaceous and nonsolanaceous plants.—Ann. ent. Soc. Am. 61, 493503.CrossRefGoogle Scholar
Huckett, H. C. (1941). Derris and the control of the Mexican bean beetle.—J. econ. Ent. 34, 566571.CrossRefGoogle Scholar
Husain, M. A., Mathur, C. B. & Roonwal, M. L. (1946). Studies on Schistocerca gregaria (Forskål). XIII. Food and feeding habits of the desert locust.—Indian J. Ent. 8, 141163.Google Scholar
Ishikawa, S. (1963). Responses of maxillary chemoreceptors in the larva of the silkworm, Bombyx mori, to stimulation by carbohydrates.—J. cell. comp. Physiol. 61 99107.Google Scholar
Ishikawa, S. (1966). Electrical response and function of a bitter substance receptor associated with the maxillary sensilla of the larva of the silkworm, Bombyx mori L.—J. cell. Physiol. 67, 111.Google Scholar
Ishikawa, S. & Hirao, T. (1963). Electrophysiological studies of taste sensation in the larvae of the silkworm Bombyx mori. Responsiveness of sensilla styloconica on the maxilla.—Bull. seric. Exp. Stn Japan 18, 297339. [In Japanese.]Google Scholar
Ishikawa, S. & Hirao, T. (1965). Studies on olfactory sensation in the larvae of the silkworm, Bombyx mori. III. Attractants and repellents of hatched larvae.—Bull. seric. Exp. Stn Japan 20, 2136. [In Japanese.]Google Scholar
Ishikawa, S. & Hirao, T. (1966). Studies on the feeding of the silkworm Bombyx mori L. I. Analysis of hostplant preference, especially of feeding-inhibition mechanism.—Bull. seric. Exp. Stn Japan 20, 291321. [In Japanese.]Google Scholar
Ishikawa, S., Hirao, T. & Arai, N. (1969). Chemosensory basis of hostplant selection in the silkworm.—Entomologia exp. appl. 12, 544554.Google Scholar
Ito, T., Horie, Y. & Fraenkel, G. (1959). Feeding on cabbage and cherry leaves by maxillectomized silkworm larvae.—J. seric. Sci. Tokyo 28, 107113. [In Japanese.]Google Scholar
Jermy, T. (1961 a). The rejective effect of some inorganic salts on the Colorado beetle (Leptinotarsa decemlineata Say) adults and larvae.—Növényvéd. Kut. Intéz. Évk. 8, 121130. [In Hungarian.]Google Scholar
Jermy, T. (1961 b). On the nature of the oligophagy in Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae).—Acta zool, hung. 7, 119132.Google Scholar
Jermy, T. (1965). The role of rejective stimuli in the host selection of phytophagous insects. Proc. XIIth Int. Congr. Ent., London, 1964, p. 547.Google Scholar
Jermy, T. (1966). Feeding inhibitors and food preference in chewing phytophagous insects.—Entomologia exp. appl. 9, 112.Google Scholar
Jermy, T. (1971). Biological background and outlook of the antifeedant approach to insect control.—Acta Phytopathol. Acad. Sci. Hung. 6, 253260.Google Scholar
Johnson, J. P. (1941). Seasonal development of the Japanese beetle and spraying for the adult insect.—Bull. Conn, agric. Exp. Stn no. 445, 363367.Google Scholar
Joshi, B. G., Ramaprasad, G. & Narayana, C. L. (1967). Studies on antifeeding properties of triphenyltin acetate against the tobacco caterpillar Prodenia litura F.—Indian J. Ent. 29, 1820.Google Scholar
Kareem, A. A. (1970). Studies with an antifeeding compound, triphenyl tin acetate against the larvae of Spodoptera littoralis Boisd. (Noctuidae: Lepidoptera) on castor (Ricinus communis L.).—Madras agric. J. 57, 393396.Google Scholar
Kato, N., Takahashi, M., Shibayama, M. & Munakata, K. (1972). Antifeeding active substances for insects in Clerodendron tricotomum Thunb.Agric. & biol. Chem. 36, 25792582.Google Scholar
Kennedy, J. S. (1965). Mechanisms of host plant selection.—Ann. appl. Biol. 56, 317322.CrossRefGoogle Scholar
Khalifa, A., Salama, H. S., Azmy, N. & El-Sharaby, A. (1974). Taste sensitivity of the cotton leafwonm, Spodoptera littoralis, to chemicals.—J. Insect Physiol. 20, 6776.Google Scholar
Klun, J. A., Guthrie, W. D., Hallaver, A. R. & Russell, W. A. (1970). Genetic nature of the concentration of 2,4-dihydroxy-7-methoxy 2H-l,4-benzoxazin-3(4H)-one and resistance to the European corn borer in a diallel set of eleven maize inbreds.—Crop Sci. 10, 8790.CrossRefGoogle Scholar
Klun, J. A. & Robinson, J. F. (1969). Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of the plant and its relation to resistance of the host plant to the European corn borer.—J. econ. Ent. 62, 214220.CrossRefGoogle Scholar
Kuhn, R. & Gauhe, H. (1947). Über die Bedeutung des Demissins für die Resistenz von Solanum demissum gegen die Larven des Kartoffelkäfers.—Z. Naturf. 2B, 407409.CrossRefGoogle Scholar
Kuhn, R. & Löw, I. (1955). Resistance factors against Leptinotarsa decemlineata Say, isolated from the leaves of wild Solanum species. In Sevag, M. G., Reid, R. D. & Reynolds, O. E. (Eds.). Origins of resistance to toxic agents.—122132New York, Academic Press.Google Scholar
Kuhn, R., Löw, I. & Gauhe, A. (1950). Über das Alkaloid-Glykosid von Lycopersicum esculentum var. pruniforme und seine Wirkung auf die Larven des Kartoffelkäfers.—Chem. Ber. 83, 448452.Google Scholar
Lange, W. H. (1962). Antifeeding compounds: insect control by starvation.—Fm Chem. 125 (11), 22, 50.Google Scholar
Lavie, D., Jain, M. K. & Shpan-Gabrielith, S. R. (1967). A locust phagorepellent from two Melia species.—Chem. Commun. no. 18, 910911.Google Scholar
Lea, A. & Nolte, M. C. A. (1941). Laboratory experiments on poison baits for the brown and the red locust: 1937–1938Sci. Bull. Dep. Agric. For. Un. S. Afr. no 230, 56 pp.Google Scholar
Lipp, J. W. (1929). Preliminary tests with possible repellents of the Oriental peach moth.—J. econ. Ent. 22, 116126.Google Scholar
Loomis, R. S., Beck, S. D. & Stauffer, J. F. (1957). The European corn borer, Pyrausta nubilalis (Hubn), and its principal host plant. V. A chemical study of host plant resistance.—Pl. Physiol., Lancaster 32, 379385.Google Scholar
Ma, Wei-Chun (1969). Some properties of gustation in the larva of Pieris brassicae.—Entomologia exp. appl. 12, 584590.Google Scholar
Ma, Wei-Chun (1972). Dynamics of feeding responses in Pieris brassicae Linn, as a function of chemosensory input: a behavioural, ultrastructural and electrophysiological study.—Meded. LandbHoogesch. Wageningen 72 (11), 162 pp.Google Scholar
Manglitz, G. R. & Gorz, H. J. (1964). Host-range studies with the sweetclover weevil and the sweetclover aphid.—J. econ. Ent. 57, 683687.Google Scholar
Mathur, Y. K. & Saxena, R. C. (1972). Note on the possible use of triphenyl tin acetate as a crop-protectant against some lepidopterous pests.—Indian J. Agric. Sci. 42, 427428.Google Scholar
Matolcsy, G., Sáringer, Gy., Gáborjányi, R. & Jermy, T. (1968). Antifeeding effect of some substituted phenoxy compounds on chewing and sucking phytophagous insects.—Acta Phytopathol. Acad. Sci. Hung. 3, 275277.Google Scholar
Matsumoto, Y. (1962). A dual effect of coumarin, olfactory attraction and feeding inhibition, on the vegetable weevil adult, in relation to the uneatability of sweetclover leaves. Studies on the host plant determination of the leaf-feeding insects. VI. Jap. J. appl. Ent. Zool. 6, 141149.Google Scholar
Matteson, J. W. & Taft, H. M. (1963). Carbamate-induced systemic repellency to the boll weevil on cotton.—J. econ. Ent. 56, 892893.CrossRefGoogle Scholar
Matteson, J. W., Taft, H. M. & Rainwater, C. F. (1963). Chemically induced resistance in the cotton plant to attack by the boll weevil.—J. econ. Ent. 56, 189192.Google Scholar
Maxwell, F. G. (1972). Host plant resistance to insects—nutritional and pest management relationships. In Rodriguez, J. G. (Ed.). Insect and mite nutrition. Significance and implications in ecology and pest management.—599609Amsterdam, North-Holland.Google Scholar
Maxwell, F. G., Jenkins, J. N. & Parrott, W. L. (1972). Resistance of plants to insects.—Adv. Agron. 24, 187265.Google Scholar
Maxwell, F. G., Jenkins, J. N., Parrott, W. L. & Buford, W. T. (1969). Factors contributing to resistance and susceptibility of cotton and other hosts to the boll weevil Anthonomus grandis.—Entomologia exp. appl. 12, 801810.Google Scholar
Maxwell, F. G., Parrott, W. L., Jenkins, J. N. & Lafever, H. N. (1965). A boll weevil feeding deterrent from the calyx of an alternate host, Hibiscus syriacus.—J. econ. Ent. 58, 985988.Google Scholar
Meisner, J. & Ascher, K. R. S. (1965). Antifeedants against the potato tuber moth (Gnorimoschema operculella Zell.) and the striped maize borer (Chilo agamemnon Bles.): laboratory experiments on leaves.—Z. PflKrankh. PflPath. PflSchutz 72, 458466.Google Scholar
Merz, E. (1959). Pflanzen und Raupen.—Biol. Zbl. 78, 152188.Google Scholar
Metzger, F. W. & Grant, D. H. (1932). Repellency to the Japanese beetle of extracts made from plants immune to attack.—Tech. Bull. U.S. Dep. Agric. no. 299, 21 pp.Google Scholar
Montgomery, M. E. & Arn, H. (1974). Feeding response of Aphis pomi, Myzus persicae and Amphorophora agathonica to phlorizin.—J. Insect Physiol. 20, 413421.Google Scholar
Munakata, K. (1970). Insect antifeedants in plants. In Wood, D. L., Silverstein, R. M. & Nakajima, M. (Eds). Control of insect behaviour by natural products. 179187New York, Academic Press.Google Scholar
Murbach, R. (1967). Effet en plein champ de fongicides à base de fentin-acétate, de manèbe et d'oxychlorure de cuivre sur la densité de population du doryphore de la pomme de terre.—Schweiz. landwirt Forsch. 6, 345357.Google Scholar
Murbach, R. & Corbaz, R. (1963). Influence de trois types de fongicides utilisés en Suisse contre le mildiou de la pomme de terre (Phytophthora infestans (Mont.) de Bary) sur la densité de population du doryphore (Leptinotarsa decemlineata Say).—Phytopath. Z. 47, 182188.Google Scholar
Nault, L. R. & Styer, W. E. (1972). Effects of sinigrin on host selection by aphids.—Entomologia exp. appl. 15, 423437.Google Scholar
Nayar, J. K. & Fraenkel, G. (1962). The chemical basis of hostplant selection in the silkworm, Bombyx mori (L.).—J. Insect Physiol. 8, 505525.Google Scholar
Nayar, J. K. & Fraenkel, G. (1963). The chemical basis of the host selection hi the Mexican bean beetle, Epilachna varivestis (Coleoptera, Coccinellidae).—Ann. ent. Soc. Am. 56, 174178.Google Scholar
Nayar, J. K. & Thorsteinson, A. J. (1963). Further investigations into the chemical basis of insect-host plant relationships in an oligophagous insect, Plutella maculipennis (Curtis) (Lepidoptera: Plutellidae).—Can. J. Zool. 41, 923929.CrossRefGoogle Scholar
Norris, D. M., (1970). Quinol stimulation and quinone deterrency of gustation by Scolytus multistriatus (Coleoptera: Scolytidae).—Ann. ent. Soc. Am. 63, 476478.Google Scholar
Norris, D. M., Baker, J. E., Borg, T. K., Ferkovich, S. M. & Rozental, J. M. (1970). An energy-transduction mechanism in chemoreception by the bark beetle, Scolytus multistriatus.—Contr. Boyce Thompson Inst. Pl. Res. 24, 263274.Google Scholar
Painter, R. H. (1951). Insect resistance in crop plants.—520 pp. New York, MacMillan.Google Scholar
Painter, R. H. (1958). Resistance of plants to insects.—A. Rev. Ent. 3, 267290.Google Scholar
Pathak, M. D. (1969). Stem borer and leafhopper-planthopper resistance in rice varieties.—Entomologia exp. appl. 12, 789800.CrossRefGoogle Scholar
Pawlowski, S. H., Riegert, P. W. & Krzymanski, J. (1968). Use of grasshoppers in bioassay of thioglucosides in rapeseed (Brassica napus).Nature, Lond. 220, 174175.Google Scholar
Perttunen, V. (1957). Reactions of two bark beetle species, Hylurgops palliatus Gyll. and Hylastes ater Payk. (Col., Scolytidae) to the terpene α-pinene.—Suom. hyönt. Aikak. 23, 101110.Google Scholar
Pierpont, R. L. (1939). Japanese beetle control tests on American elm trees in Delaware.—J. econ. Ent. 32, 253255.Google Scholar
Poe, S. L. & Woltz, S. S. (1972). Antimetabolite effects on larval feeding of Spodoptera eridania.—J. econ. Ent. 65, 201202.Google Scholar
Pradhan, S. & Jotwani, M. G. (1968). Neem as an insect deterrent.—Chem. Age India 19, 756760.Google Scholar
Pradhan, S., Jotwani, M. G. & Rai, B. K. (1962). The neem seed deterrent to locusts.—Indian Fmg 12(8), 7, 11.Google Scholar
Radwan, H. S. & Shaaban, A. M. (1973). Efficiency of certain organo-metal compounds against the Egyptian cotton leafworm Spodoptera littoralis Boisd. under field conditions.—Z. angew. Ent. 74, 362366.Google Scholar
Rautapää, J. (1970). Feeding deterrents in Ribes: preference of Pteronidea ribesii Scop. (Hym., Tenthredinidae) for Ribes species.—Annls ent. fenn. 36, 118120.Google Scholar
Rees, C. J. C. (1969). Chemoreceptor specificity associated with choice of feeding site by the beetle, Chrysolina brunsvicensis on its foodplant, Hypericum hirsutum.—Entomologia exp. appl. 12, 565583.Google Scholar
Rees, C. J. C. & Hori, N. (1968). The effect of electrolytes of the general formula XCl2 on the response of the type 1 labellar chemoreceptor of the blowfly, Phormia.—J. Insect I Physiol. 14, 14991513.CrossRefGoogle Scholar
Rehr, S. S., Janzen, D. H. & Feeny, P. P. (1973). L-Dopa in legume seeds: a chemical barrier to insect attack.—Science N.Y. 181, 8182.Google Scholar
Salama, H. S., Dimetry, N. Z. & Salem, S. A. (1971). On the host preference and biology of the cotton leaf worm Spodoptera littoralis Bois.—Z. angew. Ent. 67, 261266.Google Scholar
Salama, H. S. & El-Sharaby, A. F. (1973). Effect of zinc sulphate on the feeding and growth of Spodoptera littoralis Boisd.—Z. angew. Ent. 72, 383389.Google Scholar
Schoonhoven, L. M. (1968). Chemosensory bases of host plant selection.—A. Rev. Ent. 13, 115136.Google Scholar
Schoonhoven, L. M. (1969). Gustation and foodplant selection in some Lepidopterous larvae.—Entomologia exp. appl. 12, 555564.Google Scholar
Schoonhoven, L. M. (1973). Plant recognition by lepidopterous larvae.—Symp. R. ent. Soc. Lond. 6, 8799.Google Scholar
Schoonhoven, L. M. & Derksen-Koppers, I. (1973). Effects of secondary plant substances on drinking behaviour in some Heteroptera.—Entomologia exp. appl. 16, 141145.Google Scholar
Sinha, N. P. & Gulati, K. C. (1965). Neem seed cake as a source of pest control chemical III. Repellency against locusts.—Proc. natn. Acad. Sci. India, Sect. B. 35, 338342.Google Scholar
Solel, Z. (1964). A broad range pesticidal effect of brestan.—Israel J. agric. Res. 14, 31.Google Scholar
Stürckow, B. (1959). Über den Geschmacksinn und den Tastsinn von Leptinotarsa decemlineata Say (Chrysomelidae).—Z. vergl. Physiol. 42, 255302.Google Scholar
Sundaramurthi, V. T. & Kareem, A. A. (1968). Studies on the antifeedant against the caterpillars of Pericallia vicini F. (Arctiidae) and Spodoptera littoralis Boisd. (Noctuidae: Lepidoptera) on castor (Ricinus communis L.)Madras agric. J. 55, 296300.Google Scholar
Thomas, J. G. (1966). The sense organs on the mouth parts of the desert locust (Schistocerca gregaria).—J. Zool. 148, 420448.Google Scholar
Thorsteinson, A. J. (1953). The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis (Curt.) Lepidoptera).—Can. J. Zool. 31, 5272.Google Scholar
Thorsteinson, A. J. (1960). Host selection in phytophagous insects.—A. Rev. Ent. 5, 193218.CrossRefGoogle Scholar
Touhey, J. G. & Bray, D. F. (1961). An evaluation of certain compounds as feeding deterrents against the smaller European elm bark beetle, Scolytus multistriatus.—J. econ. Ent. 54, 293296.Google Scholar
Van Emden, H. F. & Wearing, C. H. (1965). The role of the aphid host plant in delaying economic damage levels in crops.—Ann. appl. Biol. 56, 323324.Google Scholar
Volkonsky, M. (1937 a). Sur l'action acridifuge des extraits de feuilles de Melia azedarach.—Archs Inst. Pasteur Algér. 15, 427432.Google Scholar
Volkonsky, M. (1937 b). Sur un precédé nouveau de protection des cultures contre les acridiens.—C. r. Séanc. Soc. Biol. 125, 417418.Google Scholar
Wada, K., Enomoto, Y., Matsui, K. & Munakata, K. (1968). Insect antifeedants from Parabenzoin trilobum (1). Two new sesquiterpenes, shirimodiol-diacetate and -mono-acetate.—Tetrahedron Lett, no. 45, 46734676.Google Scholar
Wada, K., Enomoto, Y. & Munakata, K. (1970). Insect feeding inhibitors in plants. Part II. The structures of shiromodiol-diacetate, shiromool, and shiromodiol-monoacetate.—Agric. & biol. Ghent. 34, 946953.Google Scholar
Wada, K., Matsui, K., Enomoto, Y., Ogiso, O. & Munakata, K. (1970). Insect feeding inhibitors in plants. Part I. Isolation of three new sesquiterpenoids in Parabenzoin trilobum Nakai.—Agric. & biol. Chem. 34, 941945.Google Scholar
Wada, K. & Munakata, K. (1968). Naturally occurring insect control chemicals. Isoboldine, a feeding inhibitor, and cocculolidine, an insecticide in the leaves of Cocculus trilobus DC.—J. agric. Fd Chem. 16, 471474.Google Scholar
Wada, K. & Munakata, K. (1971). Insect feeding inhibitors in plants. Part III. Feeding inhibitory activity of terpenoids in plants.—Agric. & biol. Chem. 35, 115118.Google Scholar
Waldbauer, G. P. (1962). The growth and reproduction of maxillectomized tobacco hornworms feeding on normally rejected non-solanaceous plants.—Entomologia exp. appl. 5, 147158.Google Scholar
Whitten, R. R. (1942). Toxic and repellent sprays for the control of elm bark beetles.—Circ. U.S. Dep. Agric. no. 647, 12 pp.Google Scholar
Wolfenbarger, D. A., Lowry, W. L., Scales, A. L. & Parencia, C. R. Jr (1968). Effect of 4′-(3,3-dimethyl-7-triazeno) acetanilide and other compounds on several lepidopterous pests of cotton.—J. econ. Ent. 61, 235238.Google Scholar
Yamamoto, R. T. & Jenkins, R. Y. (1972). Hostplant preferences of tobacco hornworm moths. In Rodriguez, J. G. (Ed.). Insect and mite nutrition. Significance and implications in ecology and pest management.—567574. Amsterdam, North-Holland.Google Scholar