Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T11:27:15.518Z Has data issue: false hasContentIssue false

Characterization of microsatellite DNA libraries from three mealybug species and development of microsatellite markers for Pseudococcus viburni (Hemiptera: Pseudococcidae)

Published online by Cambridge University Press:  17 December 2013

M.C.G. Correa*
Affiliation:
Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile
T. Zaviezo
Affiliation:
Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile
J. Le Maguet
Affiliation:
Institut National de la Recherche Agronomique, UMR SVQV INRA/UDS, Equipe ViVe. 28, rue de Herrlisheim. BP 20507, 68000 Colmar, France Institut Français des Productions Cidricoles, La Rangée Chesnel, 61500 Sées, France
E. Herrbach
Affiliation:
Institut National de la Recherche Agronomique, UMR SVQV INRA/UDS, Equipe ViVe. 28, rue de Herrlisheim. BP 20507, 68000 Colmar, France
T. Malausa
Affiliation:
Institut National de la Recherche Agronomique, UMR ISA INRA/UNSA/CNRS, Equipe BPI. 400, route des Chappes. BP 167, 06903 Sophia-Antipolis, France
*
*Author for correspondence Phone: +56-2-26864268 Fax: +56-2-25534130 E-mail: [email protected]; [email protected]

Abstract

Mealybugs (Hemiptera: Pseudococcidae) are important pests for crops worldwide. Different species, cryptic taxa under the same species name or even populations within a species can differ in biological characteristics, such as phenology, resistance to insecticides, virus transmission and susceptibility to natural enemies. Therefore, their management efficacy depends on their accurate identification. Microsatellite genetic markers are efficient in revealing the fine-scale taxonomic status of insects, both at inter- and intra-specific level. Despite their potential uses, microsatellites have been developed only for one mealybug species so far. Hence, it is unclear whether microsatellites may be useful to assess mealybug population differentiation and structuring. In this work, we tested the feasibility of developing microsatellite markers in mealybugs by: (i) producing and characterizing microsatellite DNA libraries for three species: Pseudococcus viburni, Pseudococcus comstocki and Heliococcus bohemicus, and (ii) by developing and testing markers for Ps. viburni. The obtained libraries contained balanced percentages of dinucleotide (ranging from 15 to 25%) and trinucleotide (from 5 to 17%) motifs. The marker setup for Ps. viburni was successful, although 70% of the primers initially tested were discarded for a lack of polymorphism. Finally, 25 markers were combined in two multiplex polymerase chain reactions with 21 displaying no evidence of deviation from Hardy–Weinberg equilibrium. Ps. viburni markers were tested on one population from France and one from Chile. The markers revealed a significant genetic differentiation between the two populations with an Fst estimate of 0.266.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd-Rabou, S., Shalaby, H., Germain, J.-F., Ris, N., Kreiter, P. & Malausa, T. (2012) Identification of mealybug pest species (Hemiptera: Pseudococcidae) in Egypt and France, using a DNA barcoding approach. Bulletin of Entomological Research 102, 19.CrossRefGoogle ScholarPubMed
Almeida, R.P.P., Daane, K.M., Bell, V.A., Blaisdell, G.K., Cooper, M.L., Herrbach, E. & Pietersen, G. (2013) Ecology and management of grapevine leafroll disease. Frontiers in Microbiology 4, 94. DOI: 10.3389/fmicb.2013.00094.CrossRefGoogle ScholarPubMed
Beltrà, A., Soto, A. & Malausa, T. (2012) Molecular and morphological characterisation of Pseudococcidae surveyed on crops and ornamental plants in Spain. Bulletin of Entomological Research 102, 165172.CrossRefGoogle ScholarPubMed
Ben-Dov, Y., Miller, D.R. & Gibson, G.A.P. (2010) Scale Net. Distribution of a Scale Query Results. Available online at http://www.sel.barc.usda.gov/scalecgi/distrib.exe?Family=Pseudococcidae&genus=pseudococcus&species=viburni&subspecies=&intro=A (accessed 27 June 2013).Google Scholar
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57, 289300.Google Scholar
Beuning, L.L., Murphy, P., Wu, E., Batchelor, T.A. & Morris, B.A.M. (1999) Molecular-based approach to the differentiation of mealybug (Hemiptera: Pseudococcidae) species. Journal of Economic Entomology 92, 463472.CrossRefGoogle Scholar
Chakraborty, R., Kimmel, M., Stivers, D.N., Davison, L.J. & Deka, R. (1997) Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proceedings of the National Academy of Sciences of the United States of America 94, 10411046.CrossRefGoogle ScholarPubMed
Chapuis, M.-P. & Estoup, A. (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24, 621631.CrossRefGoogle ScholarPubMed
Correa, M., Aguirre, C., Germain, J., Hinrichsen, P., Zaviezo, T., Malausa, T. & Prado, E. (2011) A new species of Pseudococcus (Hemiptera: Pseudococcidae) belonging to the “Pseudococcus maritimus” complex from Chile: molecular and morphological description. Zootaxa 2926, 4654.CrossRefGoogle Scholar
Correa, M.C.G., Germain, J.-F., Malausa, T. & Zaviezo, T. (2012) Molecular and morphological characterization of mealybugs (Hemiptera: Pseudococcidae) from Chilean vineyards. Bulletin of Entomological Research 102, 524530.CrossRefGoogle ScholarPubMed
Daane, K.M., Almeida, R.P.P., Bell, V.A., Walker, J.T.S., Botton, M., Fallahzadeh, M., Mani, M., Miano, J.L., Sforza, R., Walton, V.M. & Zaviezo, T. (2012) Biology and management of mealybugs in vineyards. pp. 271307 in Bostanian, N.J., Isaacs, R. & Vincent, C. (Eds) Arthropod Management in Vineyards: Pests, Approaches, and Future Directions. New York, Springer.CrossRefGoogle Scholar
Franco, J.C., Suma, P., Silva, E.B., Blumberg, D. & Mendel, Z. (2004) Management strategies of mealybug pests of citrus in mediterranean countries. Phytoparasitica 32, 507522.CrossRefGoogle Scholar
Franco, J.C., Zada, A. & Mendel, Z. (2009) Novel approaches for the management of mealybug pests. pp. 233278 in Ishaaya, I. & Horowitz, A.R. (Eds) Biorational Control of Arthropod Pests. Dordrecht, Netherlands, Springer.CrossRefGoogle Scholar
Gilles, A., Meglécz, E., Pech, N., Ferreira, S., Malausa, T. & Martin, J.-F. (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 12, 245.CrossRefGoogle ScholarPubMed
Gimpel, W.F. & Miller, D.R. (1996) Systematic analysis of the mealybugs in the Pseudococcus maritimus complex (Homoptera: Pseudococcidae). Contributions on Entomology 2, 1163.Google Scholar
Guichoux, E., Lagache, L., Wagner, S., Chaumeil, P., Léger, P., Lepais, O., Lepoittevin, C., Malausa, T., Revardel, E., Salin, F. & Petit, R.J. (2011) Current trends in microsatellite genotyping. Molecular Ecology Resources 11, 591611.CrossRefGoogle ScholarPubMed
Hardy, N., Gullan, P. & Hodgson, C. (2008) A subfamily-level classification of mealybugs (Hemiptera: Pseudococcidae) based on integrated molecular and morphological data. Systematic Entomology 33, 5171.CrossRefGoogle Scholar
Herrbach, E., Le Maguet, J. & Hommay, G. Virus transmission by mealybugs and soft scales (Hemiptera, Coccoidea) in Brown, J.K. (Ed.) Vector-mediated Transmission of Plant Pathogens. American Phytopathological Society Press, (in press).Google Scholar
Kothera, L., Zimmerman, E.M. & Richards, C.M. (2009) Microsatellite characterization of subspecies and their hybrids in Culex pipiens complex (Diptera: Culicidae) mosquitoes along a North–South transect in the Central United States. Journal of Medical Entomology 46, 236248.CrossRefGoogle ScholarPubMed
Malausa, T., Dalecky, A., Ponsard, S., Audiot, P., Streiff, R., Chaval, Y. & Bourguet, D. (2007) Genetic structure and gene flow in French populations of two Ostrinia taxa: host races or sibling species? Molecular Ecology 16, 42104222.CrossRefGoogle ScholarPubMed
Malausa, T., Fenis, A., Warot, S., Germain, J.-F., Ris, N., Prado, E., Botton, M., Vanlerberghe-Masutti, F., Sforza, R., Cruaud, C., Couloux, A. & Kreiter, P. (2011 a) DNA markers to disentangle complexes of cryptic taxa in mealybugs (Hemiptera: Pseudococcidae). Journal of Applied Entomology 135, 142155.CrossRefGoogle Scholar
Malausa, T., Gilles, A., Meglécz, E., Blanquart, H., Duthoy, S., Costedoat, C., Dubut, V., Pech, N., Castagnone-Sereno, P., Délye, C., Feau, N., Frey, P., Gauthier, P., Guillemaud, T., Hazard, L., Le Corre, V., Lung-Escarmant, B., Malé, P.-J., Ferreira, S. & Martin, J.-F. (2011 b) High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Molecular Ecology Resources 11, 638644.CrossRefGoogle ScholarPubMed
Martin, J.-F., Pech, N., Meglécz, E., Ferreira, S., Costedoat, C., Dubut, V., Malausa, T. & Gilles, A. (2010) Representativeness of microsatellite distributions in genomes, as revealed by 454 GS-FLX titanium pyrosequencing. BMC Genomics 11, 560.CrossRefGoogle ScholarPubMed
Martins, R.F., Zina, V., Da Silva, E.B., Rebelo, M.T., Figueiredo, E., Mendel, Z., Paulo, O.S., Franco, J.C. & Seabra, S.G. (2012 a) Isolation and characterization of fifteen polymorphic microsatellite loci for the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae), and cross-amplification in two other mealybug species. Journal of Genetics 91, 7578.Google ScholarPubMed
Martins, R.F., Zina, V., Da Silva, E.B., Rebelo, M.T., Figueiredo, E., Mendel, Z., Paulo, O.S., Franco, J.C. & Seabra, S.G. (2012 b) Data from: isolation and characterization of fifteen polymorphic microsatellite loci for the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae), and cross-amplification in two other mealybug species. Dryad Digital Repository. DOI: 10.5061/dryad.82gr4.Google Scholar
Meglécz, E., Petenian, F., Danchin, É., Coeur D'Acier, A., Rasplus, J.-Y. & Faure, E. (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia . Molecular Ecology 13, 16931700.CrossRefGoogle ScholarPubMed
Meglécz, E., Anderson, S.J., Bourguet, D., Butcher, R., Caldas, A., Cassel-Lundhagen, A., Coeur D'Acier, A., Dawson, D.A., Faure, N., Fauvelot, C., Franck, P., Harper, G., Keyghobadi, N., Kluetsch, C., Muthulakshmi, M., Nagaraju, J., Patt, A., Péténian, F., Silvain, J.-F. & Wilcock, H.R. (2007) Microsatellite flanking region similarities among different loci within insect species. Insect Molecular Biology 16, 175185.CrossRefGoogle ScholarPubMed
Meglécz, E., Costedoat, C., Dubut, V., Gilles, A., Malausa, T., Pech, N. & Martin, J.-F. (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26, 403404.CrossRefGoogle ScholarPubMed
Miller, D.R. (1985) Lectotype designation for Pseudococcus affinis (Maskell) (Homoptera: Coccoidea: Pseudococcidae). Proceedings of the Entomological Society of Washington 87, 480.Google Scholar
Park, D.-S., Jin Leem, Y., Hahn, K.-W., Suh, S.-J., Hong, K.-J. & Oh, H.-W. (2010) Molecular identification of mealybugs (Hemiptera: Pseudococcidae) found on Korean pears. Journal of Economic Entomology 103, 2533.CrossRefGoogle ScholarPubMed
Pieterse, W., Muller, D. & Vuuren, B. (2010) A molecular identification approach for five species of mealybug (Hemiptera: Pseudococcidae) on citrus fruit exported from South Africa. African Entomology 18, 2328.CrossRefGoogle Scholar
Rosas-García, N.M., Sarmiento-Benavides, S.L., Villegas-Mendoza, J.M., Hernández-Delgado, S. & Mayek-Pérez, N. (2010) Genetic differentiation among Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) populations living on different host plants. Environmental Entomology 39, 10431050.CrossRefGoogle ScholarPubMed
Rousset, F. (2008) Genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8, 103106.CrossRefGoogle ScholarPubMed
Rung, A., Scheffer, S., Evans, G. & Miller, D. (2008) Molecular identification of two closely related species of mealybugs of the genus Planococcus (Homoptera: Pseudococcidae). Annals of the Entomological Society of America 101, 525532.CrossRefGoogle Scholar
Saccaggi, D.L., Krüger, K. & Pietersen, G. (2008) A multiplex PCR assay for the simultaneous identification of three mealybug species (Hemiptera: Pseudococcidae). Bulletin of Entomological Research 98, 2733.CrossRefGoogle ScholarPubMed
Sanchez, J.A., La-Spina, M., Guirao, P. & Cánovas, F. (2013) Inferring the population structure of Myzus persicae in diverse agroecosystems using microsatellite markers. Bulletin of Entomological Research 103, 473484.CrossRefGoogle ScholarPubMed
Sazo, L., Araya, J.E. & De la Cerda, J. (2008) Efecto del coadyuvante siliconado e insecticidas en el control del chanchito blanco de la vid, Pseudococcus viburni (Hemiptera: Pseudococcidae). Ciencia e Investigación Agraria 35, 215222.CrossRefGoogle Scholar
Selkoe, K.A. & Toonen, R.J. (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters 9, 615629.CrossRefGoogle ScholarPubMed
Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. & Shipley, P. (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538.CrossRefGoogle Scholar
Varela, L., Smith, R., Battany, M. & Bentley, W. (2006) Which mealybug is it, why should you care? Practical Winery and Vineyard January-February 2006, 16.Google Scholar
Wakgari, W. & Giliomee, J. (2005) Description of adult and immature females of six mealybug species (Hemiptera: Pseudococcidae) found on citrus in South Africa. African Entomology 13, 281332.Google Scholar