Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T18:27:19.610Z Has data issue: false hasContentIssue false

Zinc absorption in adult men from a chicken sandwich made with white or wholemeal bread, measured by a double-label stable-isotope technique

Published online by Cambridge University Press:  09 March 2007

Susan J. Fairweather-Tait
Affiliation:
AFRC Institute of Food Research, Norwich Research Park, Colney, Norwich NRI 3SR
Thomas E. Fox
Affiliation:
AFRC Institute of Food Research, Norwich Research Park, Colney, Norwich NRI 3SR
S. Gabrielle Wharf
Affiliation:
AFRC Institute of Food Research, Norwich Research Park, Colney, Norwich NRI 3SR
John Eagles
Affiliation:
AFRC Institute of Food Research, Norwich Research Park, Colney, Norwich NRI 3SR
Hugh Kennedy
Affiliation:
AFRC Institute of Food Research, Norwich Research Park, Colney, Norwich NRI 3SR
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Eleven fasted adult men consumed a chicken meat sandwich made with white or wholemeal bread, extrinsically labelled with 2 mg 67Zn, on two different occasions. Immediately after eating the sandwich they were given an intravenous injection of 1·5 mg 70Zn. True Zn absorption (which was approximately 7% higher than apparent absorption) was determined by the faecal balance technique by making an allowance for endogenous excretion from measurements of faecal excretion of 70Zn. There was no significant difference in mean true Zn absorption from the white or wholemeal bread sandwich, 33·6 and 25·4% respectively. It was concluded that the substitution of wholemeal for white bread does not reduce Zn absorption from meat-based sandwiches.

Type
Absorption of Inorganic Nutrients
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Ellis, R., Kelsay, J. L., Reynolds, R. D., Morris., E. R., Moser., P. B. & Frazier, C. W. (1987) Phytate:zinc and phytate × calcium: zinc millimolar ratios in self-selected diets of Americans, Asian Indians, and Nepalese. Journal of the American Dietetic Association 87, 10431047.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J. (1988) Zinc in human nutrition. Nutrition Research Reviews 1, 2337.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Fox, T. E., Wharf, S. G., Eagles, J., Crews, H. & Massey, R. (1991). Apparent zinc absorption by rats from foods labelled intrinsically and extrinsically with 67Zn. British Journal of Nutrition 66, 6571.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Johnson, A., Eagles, J., Ganatra, S., Kennedy, H. & Gurr, M. I. (1989a) Studies on calcium absorption from milk using a double-label stable isotope technique. British Journal of Nutrition 62, 379388.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Minski, M. J. & Singh, J. (1987) Nonradioisotopic method for measuring iron absorption from a Gambian meal. American Journal of Clinical Nutrition 46, 844848.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Portwood, D. E., Symss, L. L., Eagles, J. & Minski, M. J. (1989b) Iron and zinc absorption in human subjects from a mixed meal of extruded and nonextruded wheat bran and flour. American Journal of Clinical Nutrition 49, 151155.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J. & Southon, S. (1989) Studies of iron:zinc interactions in adult rats and the effect of iron fortification of two commercial infant weaning products on iron and zinc status of weanling rats. Journal of Nutrition 119, 599606.CrossRefGoogle ScholarPubMed
Ferguson, E. L., Gibson, R. S., Thompson, L. U. & Ounpuu, S. (1989) Dietary calcium, phytate, and zinc intakes and the calcium, phytate, and zinc molar ratios of the diets of a selected group of East African children. American Journal of Clinical Nutrition 50, 14501456.CrossRefGoogle ScholarPubMed
Flanagan, P. R., Cluett, J., Chamberlain, M. J. & Valberg, L. S. (1985) Dual-isotope method for determination of human zinc absorption: the use of a test meal of turkey meat. Journal of Nutrition 115, 111122.CrossRefGoogle ScholarPubMed
Fox, T. E., Fairweather-Tait, S. J., Eagles, J. & Wharf, S. G. (1991). Intrinsic labelling of different foods with stable isotopes of zinc (67Zn) for use in bioavailability studies. British Journal of Nutrition 66, 5763.CrossRefGoogle ScholarPubMed
Gallaher, D. D., Johnson, P. E., Hunt, J. R., Lykken, G. I. & Marchello, M. J. (1988) Bioavailability in humans of zinc from beef: intrinsic vs extrinsic labels. American Journal of Clinical Nutrition 48, 350354.CrossRefGoogle ScholarPubMed
Harland, B. F. & Oberleas, D. (1986) Anion-exchange method for determination of phytate in foods: collaborative study. Journal of the Association of Official Analytical Chemists 69, 667670.Google ScholarPubMed
Jackson, M. J., Giugliano, R., Giugliano, L. G., Oliveira, E. F., Shrimpton, R. & Swainbank, I. G. (1988) Stable isotope metabolic studies of zinc nutrition in slum-dwelling lactating women in the Amazon valley. British Journal of Nutrition 59, 193203.CrossRefGoogle ScholarPubMed
Janghorbani, M., Istfan, N. W., O'Pagounes, J., Steinke, F. H. & Young, V. R. (1982) Absorption of dietary zinc in man: comparison of intrinsic and extrinsic labels using a triple stable isotope method. American Journal of Clinical Nutrition 36, 537545.CrossRefGoogle ScholarPubMed
Lonnerdal, B. (1989). Food and dietary factors influencing levels and bioavailability of trace elements. In Nutrient Availability: Chemical and Biological Aspects, pp. 131143 [Southgate, D., Johnson, I. and Fenwick, G. R., editors]. Cambridge: Royal Society of Chemistry.Google Scholar
Mason, P. M., Judd, P. A., Fairweather-Tait, S. J., Eagles, J. & Minski, M. J. (1990) The effect of moderately increased intakes of complex carbohydrates (cereals, vegetables and fruit) for 12 weeks on iron and zinc metabolism. British Journal of Nutrition 63, 597611.CrossRefGoogle ScholarPubMed
Navert, B., Sandstrom, B. & Cederblad, A. (1985) Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. British Journal of Nutrition 53, 4753.Google ScholarPubMed
Parker, F. & Peterson, N. F. (1965) Quantitative analysis of phospholipids and phospholipid fatty acids from silica gel thin-layer chromatography. Journal of Lipid Research 6, 455460.CrossRefGoogle Scholar
Payne, R. W., Lane, P. W., Ainsley, A. E., Bicknell, K. E., Digby, P. G. N., Harding, S. A., Leech, P. K., Simpson, H. R., Todd, A. D., Verner, P. J., White, R. P., Gower, J. C., TunnicliffeWilson, G. Wilson, G. & Paterson, L. J. (1987) Genstat 5 Reference, Manual. Oxford: Clarendon Press.Google Scholar
Sandstrom, B., Arvidsson, B., Cederblad, A. & Bjorn-Rasmussen, E. (1980) Zinc absorption from composite meals. I. The significance of wheat extraction rate, zinc, calcium, and protein content in meals based on bread. American Journal of Clinical Nutrition 33, 739745.CrossRefGoogle ScholarPubMed
Sandstrom, B., Davidsson, L., Kivisto, B., Hasselblad, C. & Cederblad, A. (1987) The effect of vegetables and beet fibre on the absorption of zinc in humans from composite meals. British Journal of Nutrition 58, 4957.CrossRefGoogle ScholarPubMed
Snedecor, G. W. & Cochran, W. G. (1967). In Statistical Methods, pp. 91100. Ames, IA: Iowa State University Press.Google Scholar
Solomons, N. W. (1982) Biological availability of zinc in humans. American Journal of Clinical Nutrition 35, 10481075.CrossRefGoogle ScholarPubMed
Solomons, N. W., Janghorbani, M., Ting, B. T. G., Steinke, F. H., Christensen, M., Bijlani, R., Istfan, N. & Young, V. R. (1982). Bioavailability of zinc from a diet based on isolated soy protein: application in young men of the stable isotope tracer, 70Zn. Journal of Nutrition 112, 18091821.CrossRefGoogle ScholarPubMed
Valberg, L. S, Flanagan, P. R., Brennan, J. & Chamberlain, M. J. (1985) Does the oral zinc tolerance test measure zinc absorption? American Journal of Clinical Nutrition 41, 3742.CrossRefGoogle ScholarPubMed