Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T03:03:42.993Z Has data issue: false hasContentIssue false

Whole body and tissue protein synthesis in cattle

Published online by Cambridge University Press:  09 March 2007

G. E. Lobley
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Vivien Milne
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Joan M. Lovie
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
P. J. Reeds
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
K. Pennie
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The daily rates of synthesis of protein by the whole body and by the individual tissues were determined in two Hereford × Friesian heifers (236 kg and 263 kg live weight), and a dry Friesian cow (628 kg live weight).

The rate of whole-body protein synthesis (g protein/d) was estimated from the total flux through the blood of [3H]leucine and [3H]tyrosine following infusion at a constant rate for 8 h.

The fractional rates of protein synthesis (ks) in the tissues (g synthesized/d per g tissue protein) were obtained after slaughter of the animals at the end of the infusion period. The fractional rate of protein synthesis was calculated assuming that the specific radioactivity of free tyrosine in either the blood (to give ks, b) or the tissue homogenate (to give ks, h) defined closely the specific radioactivity of the amino acid precursor for protein synthesis. Total protein synthesis (As, b or As, h; g/d) in an individual tissue was calculated as the product of ks, b) (or ks, h) × protein content.

Based on the total leucine flux, i.e. without correction for oxidation, 1.6 kg protein were synthesized daily in the heifers; for the cow this value was 2.0 kg/d.

The sum of the daily total synthesis in the major tissues (muscle+bone+brain, gastrointestinal tract (GIT), liver, hide) gave values of 1.4–1.9 kg/d based on As, b, and 2.2–3.0 kg/d based on As, h.

The percentage contributions of the individual tissues to the total protein synthesis were similar in all three animals, for example based on As, h muscle was 12–16; carcass (muscle+bone+brain) 32–33; GIT 38–46; liver 7–8; skin 14–21%.

The contribution of muscle to total synthesis estimated from the leucine flux was 19–22%; this value is in agreement with those calculated on the same basis for other species.

The energy cost of protein synthesis was estimated to account for a maximum of 30% of heat production.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Airhart, J., Vidrich, A. & Khairallah, E. A. (1974). Biochem. J. 140, 539.CrossRefGoogle Scholar
Arnal, M., Ferrara, M. & Fauconneau, G. (1978). Proc. 29th Mfg Eur. Ass. Anim. Prod. p. 1. Stockholm, Sweden.Google Scholar
Buttery, P. J., Beckerton, A. & Lobbock, M. H. (1977). Proc. 2nd int. Symp. Protein Metah. Nutr. p. 32. Flevohof, The Netherlands.Google Scholar
Buttery, P. J., Beckerton, A., Mitchell, R. M., Davies, K. & Annison, E. F. (1975). Proc. Nutr. Sor. 3, 91A.Google Scholar
Cuthbertson, A. & Pomeroy, R. W. (1962). J. agric. Sci., Camb. 59, 215.CrossRefGoogle Scholar
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). Analyst, Lond. 95, 181.CrossRefGoogle Scholar
Edmunds, B. K., Buttery, P. J. & Fisher, C. (1978). Proc. Nurr. Soc. 37, 32A.Google Scholar
Fawcett, J. K. & Scott, J. E. (1960). J. clin. Path. 13, 156.CrossRefGoogle Scholar
Fell, B. F. (1961). J. Parh. Eact. 81, 251.Google Scholar
Firschein, H. E. & Shill, J. P. (1966). Analyt. Eiochem. 14, 296.Google Scholar
Fuller, M. F. (1964). The effects of some climatic factors on the growing pig. Ph.D. Thesis, University of Cambridge.Google Scholar
Garlick, P. J., Burk, T. L. & Swick, R. W. (1976). Am. J. Physiol. 230, 1108.CrossRefGoogle Scholar
Garlick, P. J. & Marshall, I. (1972). J. Neurochem. 19, 577.CrossRefGoogle Scholar
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). Biochem. J. 136, 935.CrossRefGoogle Scholar
Garlick, P. J., Millward, D. J., James, W. P. T. & Waterlow, J. C. (1975). Biorhem. biophys. Acta. 414, 71.Google Scholar
Halliday, D. & McKeran, R. O. (1975). Clin. Sci. mol. Med. 49, 581.Google Scholar
Hume, I. D., Jacobson, D. R. & Mitchell, G. E. Jr (1972). J. Nufr. 102, 495.Google Scholar
Ilan, J. & Singer, M. (1975). J. mol. Biol. 91, 39.CrossRefGoogle Scholar
James, W. P. T., Garlick, P. J., Sender, P. M. & Waterlow, J. C. (1976). Clin. Sci. mol. Med. 50, 525.Google Scholar
Lobley, G. E. & Lovie, J. M. (1979). Biochem. J. 182, 867.CrossRefGoogle Scholar
Lobley, G. E., Reeds, P. J. & Pennie, K. (1978). Proc. Nutr. Soc. 37, 96A.Google Scholar
Lobley, G. E., Webster, A. J. F. & Reeds, P. J. (1978). Proc. Nutr. Soc. 37, 20A.Google Scholar
MacRae, J. C. & Reeds, P. J. (1979). In Protein Deposiiion in Animals [Buttery, P. J. and Lindsay, D. B., editors]. London: Butterworths. (In the Press.)Google Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clin. chem. 11, 624.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J. & Reeds, P. J. (1976). Proc. Nufr. Soc. 35, 339.CrossRefGoogle Scholar
Motil, K. J., Matthews, D., Rohrbaugh, D., Brier, D., Burke, J. F. & Young, V. R. (1979). Fedn Proc. Fedn Am. Socs exp. Biol. 38, 2533 Abstr.Google Scholar
Nicholas, G. A., Lobley, G. E. & Harris, C. I. (1977). Br. J. Nutr. 38, 1.CrossRefGoogle Scholar
Palsson, H. & Verges, J. B. (1952). J. agric. Sci., Camb. 4, 1.CrossRefGoogle Scholar
Perry, S. V. & Zydowo, M. (1959). Biochem. J. 71, 220.CrossRefGoogle Scholar
Reeds, P. J., Fuller, M. F., Lobley, G. E., Cadenhead, A. & McDonald, J. D. (1978). Proc. Nutr. Soc. 37, 106A.Google Scholar
Robins, S. P. (1979). Biochem. J. 181, 75.CrossRefGoogle Scholar
Simon, O., Bergner, H. & Wolf, E. (1978). Arch. Tierernähr. 28, 629.CrossRefGoogle Scholar
Simon, O., Münchmeyer, R., Bergner, H., Zebrowska, T. & Buraczewska, L. (1978). Br. J. Nutr. 40, 243.CrossRefGoogle Scholar
Soltesz, G., Joyce, J. & Young, M. (1973). Biol. Neonate 23, 139.CrossRefGoogle Scholar
Wallace, L. R. (1948). J. agric. Sci., Camb. 38, 367.CrossRefGoogle Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North Holland.Google Scholar
Waterlow, J. C. & Stephen, J. M. L. (1967). Clin. Sci. 33, 489.Google Scholar
Webster, A. J. F., Lobley, G. E., Reeds, P. J. & Pullar, J. D. (1978). Proc. Nutr. Soc. 37, 21A.Google Scholar
Wolff, J. E., Bergman, E. N. & Williams, H. H. (1972). Am. J. Physiol. 223, 438.CrossRefGoogle Scholar
Young, V. R. & Munro, H. N. (1978). Fedn Proc. Fedn Am. Socs exp. Biol. 37, 2291.Google Scholar