Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T11:16:05.824Z Has data issue: false hasContentIssue false

A viscous fibre (methylcellulose) lowers blood glucose and plasma triacylglycerols and increases liver glycogen independently of volatile fatty acid production in the rat

Published online by Cambridge University Press:  09 March 2007

David L. Topping
Affiliation:
CSIRO (Australia) Division of Human Nutrition, Glenthorne Laboratory, O'Halloran Hill, South Australia 5158, Australia
David Oakenfull
Affiliation:
CSIRO (Australia) Division of Food Research, PO Box 52, North Ryde, New South Wales 2113, Australia
Rodney P. Trimble
Affiliation:
CSIRO (Australia) Division of Human Nutrition, Glenthorne Laboratory, O'Halloran Hill, South Australia 5158, Australia
Richard J. Illman
Affiliation:
CSIRO (Australia) Division of Human Nutrition, Glenthorne Laboratory, O'Halloran Hill, South Australia 5158, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Adult male rats were maintained on diets containing 80 g methylcellulose/kg of low (25 cP), medium (400 cP) and high (1500 cP) viscosity.

2. After 10 d, the viscosity of stomach and caecal contents was found to have increased in proportion to that of the dietary fibre. Concentrations of volatile fatty acids in caecal digesta were lowest with the high-viscosity fibre but acetate was the major acid present with all three diets. Acetate was the only acid found in significant quantities in hepatic portal venous plasma and concentrations of this acid were unaffected by diet.

3. Concentrations of glucose in arterial blood were low with the medium-and high-viscosity diets while the content of liver glycogen was high. These effects of fibre were not directly on glucose absorption as the intestines were net removers of the hexose at the time of sampling.

4. Hepatic lipogenesis and plasma triacylglycerol concentrations were both higher in rats fed on the low-viscosity fibre. Plasma cholesterol concentrations, hepatic cholesterol synthesis and faecal bile acid excretion were not altered by dietary fibre viscosity.

5. We conclude that the effects of dietary fibre on carbohydrate absorption and storage and fatty acid synthesis are a function of the viscosity of the fibre in solution, high viscosity slowing the digestion and absorption of nutrients in the small intestine. Large-bowel microbial fermentation is not of direct significance to these events. In contrast, effects of fibre polysaccharides on sterol metabolism seem not to be related to their rheological properties.

Type
Other Studies Relevant to Human Nutrition
Copyright
Copyright © The Nutrition Society 1988

References

Anderson, J. W. (1981). In Special Topics in Endocrinology and Metabolism, vol. 2 pp., 142 [Cohen, M. P. and Foa, P. P., editors]. New York: Alan R. Liss Inc.Google Scholar
Baker, N. & Huebotter, R. J. (1973). Journal of Lipid Research 14, 8794.CrossRefGoogle Scholar
Chen, W.-J. L., Anderson, J. W. & Gould, M. R. (1981). Nutrition Reports International 24, 10931098.Google Scholar
Chen, W.-J. L., Anderson, J. W. & Jennings, D. (1984). Proceedings of the Society for Experimental Biology and Medicine 75, 215218.CrossRefGoogle Scholar
Cheng, B. -Q., Trimble, R. P., Illman, R. J., Stone, B. A. & Topping, D. L. (1987). British Journal of Nutrition 57, 6976.CrossRefGoogle Scholar
Illman, R. J. & Topping, D. L. (1985). Nutrition Research 5, 839846.CrossRefGoogle Scholar
Illman, R. J., Topping, D. L. & Trimble, R. P. (1986). Journal of Nutrition 116, 16941700.CrossRefGoogle Scholar
Jenkins, D. J. A., Leeds, A. R., Gassul, M. A., Cachet, B. & Alberti, K. G. M. M. (1977). Annals of Internal Medicine 86, 2023.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gassul, M. A., Haisman, P., Dilawari, J., Goff, D. V., Metz, G. L. & Alberti, K. G. M. M. (1978). British Medical Journal i, 13921394.CrossRefGoogle Scholar
Judd, P. A. & Truswell, A. S. (1985). British Journal of Nutrition 53, 409425.CrossRefGoogle Scholar
Kannan, R., Baker, N. & Bruckdorfer, R. (1981). Journal of Nutrition 111, 12161223.CrossRefGoogle Scholar
Kazumi, T., Vranic, M. & Steiner, G. (1985). Endocrinology 117, 11451150.CrossRefGoogle Scholar
Kazumi, T., Vranic, M. & Steiner, G. (1986). Metabolism 35, 10241028.CrossRefGoogle Scholar
Kim, K.-I., Benevenga, N. J. & Grummer, R. H. (1978). Journal of Animal Science 46, 16481657.CrossRefGoogle Scholar
Kirby, R. W., Anderson, J. W., Seiling, B., Rees, E. D., Chen, W.-J. L., Miller, R. E. & Kay, R. M. (1982). American Journal of Clinical Nutrition 34, 824829.CrossRefGoogle Scholar
Munoz, J. M. & Sandstead, H. H. & Jacob, R. A. (1979). Diabetes 25, 496502.CrossRefGoogle Scholar
Muratoglou, M., Kuyumjian, J. & Kalant, N. (1986). Biochemical Journal 233, 245248.CrossRefGoogle Scholar
Simons, L. A., Balasubramaniam, S. & Ruys, J. (1982). Atherosclerosis 45, 101108.CrossRefGoogle Scholar
Stasse-Wolthuis, M. (1981). World Review of Nutrition and Dietetics 36, 100140.CrossRefGoogle Scholar
Topping, D. L. & Illman, R. J. (1986). Medical Journal of Australia 144, 307309.CrossRefGoogle Scholar
Topping, D. L., Illman, R. J., Taylor, M. N. & McIntosh, G. H. (1985 a). Annals of Nutrition and Metabolism 29, 325331.CrossRefGoogle Scholar
Topping, D. L., Illman, R. J. & Trimble, R. P. (1985 b). Nutrition Reports International 32, 809814.Google Scholar
Topping, D. L., Trimble, R. P. & Storer, G. B. (1984). Hormone and Metabolic Research 17, 281284.CrossRefGoogle Scholar
Wahren, J., Juhlin-Dannfelt, A., Bjorkman, O., DeFronzo, R. & Felig, P. (1982). Clinical Physiology 2, 315321.CrossRefGoogle Scholar
Windmueller, H. G. & Spaeth, A. E. (1966). Archives of Biochemistry and Biophysics 122, 362369.CrossRefGoogle Scholar