Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T17:25:20.052Z Has data issue: false hasContentIssue false

A vailability to pigs of amino acids in cereal grains

1. Endogenous levels of amino acids in ileal digesta and faeces of pigs given cereal diets

Published online by Cambridge University Press:  09 March 2007

M. R. Taverner
Affiliation:
Department of Biochemistry and Nutrition, University of New England, Armidale, NSW 2351, Australia
I. D. Hume
Affiliation:
Department of Biochemistry and Nutrition, University of New England, Armidale, NSW 2351, Australia
D. J. Farrell
Affiliation:
Department of Biochemistry and Nutrition, University of New England, Armidale, NSW 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Endogenous levels of amino acids in ileal digests were determined as the output from pigs given protein-free diets and by extrapolation to zero intake of linear regressions of ileal amino acid output v. dietary amino acid intake. The protein-free diets included 0 or 50 g cellulose/kg and extrapolations were made from two series of four diets which contained graded levels of wheat or barley as the only source of protein. Within each series, dietary fibre level (mg/g) was maintained at approximately 140 or 190 neutral-detergent fibre (NDF) respectively. Endogenous amino acid levels in faeces were also determined.

2. Endogenous amino acid output in faeces was linearly related to dietary fibre level; endogenous ileal output increased with dietary fibre up to approximately 100 mg NDF/g, after which endogenous output no longer increased.

3. The amino acid composition of endogenous ileal protein varied little among levels of output and among different experiments. The composition appears to be determined by the predominance of mucin protein, the slow absorption of some amino acids and the methods commonly used to measure output. The very high levels of proline and glycine in ileal digesta seemed characteristic only of protein-free and low-protein diets.

4. The amino acid composition of endogenous faecal protein also varied little among different estimates, but was considerably different from that of endogenous ileal protein. Furthermore, the similarity of bacterial and faecal proteins suggested that much of the endogenous faecal protein was of bacterial origin.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

REFERENCES

Angus, R., Sutherland, T. M. & Farrell, D. J. (1977). Proc. Nutr. Soc. Aust. 2, 90.Google Scholar
Ash, R. W. (1962). Anim. Prod. 4, 309.Google Scholar
Borgida, L. P. & Laplace, J. P. (1977). Annls Zootech. 26, 395.CrossRefGoogle Scholar
Clare, N. T. & Stevenson, A. E. (1964). N.Z. Jl agric. Res. 7, 198.CrossRefGoogle Scholar
Dolly, J. O. & Fottrell, P. F. (1969). Clin. Chim. Acta. 26, 555.CrossRefGoogle Scholar
Frape, D. L., Wolf, K. L., Wilkinson, J. & Chubb, L. C. (1968). J. Inst. Anim. Technicians 19, 61.Google Scholar
Gardner, M. L. G. (1975). J. Physiol. 253, 233.CrossRefGoogle Scholar
Gardner, M. L. G. (1976). J. Physiol. 255, 563.CrossRefGoogle Scholar
Gray, G. M. & Cooper, H. L. (1971). Gastroenterology 61, 535.CrossRefGoogle Scholar
Hashimoto, Y., Tsuiki, S., Nisizawa, K. & Pigman, W. (1963). Ann. N. Y. Acad. Sci. 106, 233.CrossRefGoogle Scholar
Heading, R. C., Schedl, H. P., Stegink, L. D. & Miller, D. L. (1977). Clin. Sci. mol. med. 52, 607.Google Scholar
Holmes, J. H. G., Bayley, H. S., Leadbeater, P. A. & Horney, F. D. (1974). Br. J. Nutr. 32, 479.CrossRefGoogle Scholar
Horowitz, M. I. (1967). Handbook of Physiology: Section 6, Alimentary Canal [Code, C. F., editor]. Washington, DC: American Physiological Society.Google Scholar
Ivan, M. (1974). A nutritional evaluation of wheat for pigs with a particular reference to quality and quantity of protein. PhD Thesis, University of New England.Google Scholar
Laplace, J. P. & Borgida, L. P. (1976). Annls Zootech. 25, 361.CrossRefGoogle Scholar
Low, A. G. (1976). Proc. Nutr. Soc. 35, 57.CrossRefGoogle Scholar
Mason, V. C., Just, A. & Bech-Anderson, S. (1976). Z. Tierphysiol. Tiernernähr. Futtermittelk 36, 310.CrossRefGoogle Scholar
Mason, V. C. & Palmer, R. (1973). Acta Agric. Scand. 23, 141.CrossRefGoogle Scholar
Mathews, D. M. (1972). Proc. Nutr. Soc. 31, 171.CrossRefGoogle Scholar
Miller, E. L. (1976). In Reviews in Rural Science, Vol. 2, p. 47 [Sutherland, T. M., McWilliam, J. R. and Leng, R. A. editors]. Armidale: University of New England Publishing Unit.Google Scholar
Mitchell, H. H. (1924). J. biol. Chem. 58, 873.CrossRefGoogle Scholar
Pigman, W. (1963). Ann. N. Y. Acad. Sci. 106, 808.CrossRefGoogle Scholar
Rolls, B. A., Turvey, A. & Coates, M. E. (1978). Br. J. Nutr. 39, 91.CrossRefGoogle Scholar
Rubino, A., Field, M. & Schwachman, H. (1971). J. biol. Chem. 246, 3542.CrossRefGoogle Scholar
Sauer, W. C. (1976). Factors affecting amino acid availability for cereal grains and their components for growing monogastric animals PhD Thesis, University of Manitoba.Google Scholar
Sauer, W. C., Stothers, S. C. & Parker, R. J. (1977). Can. J. Anim. Sci. 57, 775.CrossRefGoogle Scholar
Silk, D. B. A. (1980). Proc. Nutr. Soc. 39, 61.CrossRefGoogle Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analyt. Chem. 30, 1190.CrossRefGoogle Scholar
Sukhatmé, P. V. (1938). Sankhyá. 4, 39.Google Scholar
Van Soest, P. J. & Wine, R. H. (1967). J. Ass. off. agric. Chem. 50, 50.Google Scholar
Wojnarowska, F. & Gray, G. M. (1975). Biochim. biophys. Acta. 403, 147.CrossRefGoogle Scholar
Zebrowska, T., Buraczewska, L., Pastuszewska, B., Chamberlain, A. G. & Buraczewski, S. (1978). Roczn. Nauk roln. Ser. B 99, 75.Google Scholar