Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T01:28:34.483Z Has data issue: false hasContentIssue false

Utilization of tryptophan, nicotinamide and nicotinic acid as precursors for nicotinamide nucleotide synthesis in isolated rat liver cells

Published online by Cambridge University Press:  09 March 2007

David A. Bender
Affiliation:
Department of Biochemistry, University College and Middlesex School of Medicine, University College London, Gower Street, London WC1E 6BT
Ronald Olufunwa
Affiliation:
Department of Biochemistry, University College and Middlesex School of Medicine, University College London, Gower Street, London WC1E 6BT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Incubation of isolated rat hepatocytes with nicotinamide or nicotinic acid showed that while both vitamers were taken up from the incubation medium, neither was utilized to any significant extent as a precursor of the nicotinamide nucleotide coenzymes, NAD and NADP, and neither was capable of preventing the loss of nucleotides that occurs on incubating the cells.

2. Incubation of hepatocytes with tryptophan showed that de novo synthesis from tryptophan permitted replacement of the nucleotides lost during incubation; at high concentrations of tryptophan there was an increase above the initial intracellular concentration of NAD(P). Incubation of hepatocytes with tryptophan also resulted in the formation and release from the cells of a considerable amount of niacin, as well as the two principal metabolities of NAD(P), N1-methyl nicotinamide and methyl pyridone carboxamide.

3. It is suggested that, in the liver, preformed niacin is not utilized for nucleotide synthesis, and indeed the function of the liver appears to be synthesis of niacin from tryptophan, and its release for use by extrahepatic tissues that lack the pathway for de novo synthesis of nicotinamide nucleotides from tryptophan.

Type
General Nutrition Papers
Copyright
Copyright © The Nutrition Society 1988

References

REFERENCES

Amar-Costesec, A., Prado-Figuero, M., Beaufay, H., Nagelkerke, J. F. & van Berkel, T. J. C. (1985). Journal of Cell Biology 100, 189197.Google Scholar
Bender, D. A. (1980). Biochemical Pharmacology 29, 20992104.CrossRefGoogle Scholar
Bender, D. A. (1983). British Journal of Nutrition 50, 3342.CrossRefGoogle Scholar
Bender, D. A., Magboul, B. I. & Wynick, D. (1982). British Journal of Nutrition 48, 119127.CrossRefGoogle Scholar
Benjamin, R. C. & Gill, D. M. (1980 a). Journal of Biological Chemistry 255, 1049310501.CrossRefGoogle Scholar
Benjamin, R. C. & Gill, D. M. (1980 b). Journal of Biological Chemistry 255, 1050210508.CrossRefGoogle Scholar
Bernofsky, C. & Pankow, M. (1973). Archives of Biochemistry and Biophysics 156, 143153.CrossRefGoogle Scholar
Cantoni, O., Sestili, P., Cattabeni, F. & Stocci, V. (1986). FEBS Letters 204, 266268.CrossRefGoogle Scholar
Carlson, L. A. (1966). Clinica Chimica Acta 13, 349351.CrossRefGoogle Scholar
Carpenter, K. J. & Kodicek, E. (1950). Biochemical Journal 46, 421426.CrossRefGoogle Scholar
Clark, J. B. & Pinder, S. (1969). Biochemical Journal 114, 321330.CrossRefGoogle Scholar
Collins, P. B. & Chaykin, S. (1972). Journal of Biological Chemistry 247, 778783.CrossRefGoogle Scholar
Deguchi, T., Ichiyama, A., Nishizuka, Y. & Hayaishi, O. (1968). Biochimica et Biophysica Acta 158, 382393.CrossRefGoogle Scholar
Elliott, K. R. F., Ash, R., Pogson, C. I., Smith, S. A. & Crisp, D. M. (1976). In Use of Isolated Liver Cells and Kidney Tubules in Metabolic Studies, pp. 139143 [Tager, J. M., Soling, H. D. & Williamson, J. R., editors]. Amsterdam: North Holland.Google Scholar
Gerbner, G. B. & Dervo, J. (1970). Proceedings of the Society for Experimental Biology and Medicine 134, 689693.CrossRefGoogle Scholar
Grünicke, H., Heller, H. J., Liersch, M. & Benaguid, A. (1974). Advances in Enzyme Regulation 12, 397418.CrossRefGoogle Scholar
Holman, W. I. M. (1954). Biochemical Journal 56, 513529.CrossRefGoogle Scholar
Hunting, T. J., Gowans, B. J. & Hendersen, J. F. (1985). Molecular Pharmacology 28, 200206.Google Scholar
Joubert, C. P. & de Lange, D. (1962). Proceedings of the Nutrition Society of Southern Africa 3, 6065.Google Scholar
Kaplan, N. O., Colowick, S. P. & Barnes, C. C. (1951). Journal of Biological Chemistry 191, 461472.CrossRefGoogle Scholar
Keller, J., Liersch, M. & Grunicke, H. (1971). European Journal of Biochemistry 22, 263270.CrossRefGoogle Scholar
Lin, L.-F. H. & Henderson, L. M. (1972). Journal of Biological Chemistry 247, 80238030.CrossRefGoogle Scholar
Lowry, O. H., Passoneau, J. V. & Rock, M. K. (1961). Journal of Biological Chemistry 236, 27562759.CrossRefGoogle Scholar
McCreanor, G. M. & Bender, D. A. (1983). Biochimica et Biophysica Acta 759, 222228.CrossRefGoogle Scholar
McCreanor, G. M. & Bender, D. A. (1986). British Journal of Nutrition 56, 577586.CrossRefGoogle Scholar
Müller, H. M., Müller, C. D. & Schüber, F. (1983). Biochemical Journal 212, 459464.CrossRefGoogle Scholar
Romero, F. J. & Viña, J. (1983). Biochemical Education 11, 135137.CrossRefGoogle Scholar
Spector, R. (1979). Journal of Neurochemistry 33, 895904.CrossRefGoogle Scholar
Zatman, L. J., Kaplan, N. O., Colowick, S. P. & Ciotti, M. M. (1954). Journal of Biological Chemistry 209, 467484.CrossRefGoogle Scholar