Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T09:50:48.580Z Has data issue: false hasContentIssue false

Utilization of 14C-labelled Bacillus subtilis and Escherichia coli by sheep

Published online by Cambridge University Press:  09 March 2007

N. J. Hoogenraad
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
F. J. R. Hird
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
R. G. White
Affiliation:
Department of Biochemistry and Nutrition, University of New England, Armidale, NSW, Australia
R. A. Leng
Affiliation:
Department of Biochemistry and Nutrition, University of New England, Armidale, NSW, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Bacillus subtilis and Escherichia coli were grown on 14C-labelled glucose and used for the preparation of labelled whole cells, cell walls, cell contents and peptidoglycan.

2. The radioactive samples were injected into the abomasum of sheep and the 14C appearing in expired air, plasma glucose, urine and faeces was determined. Whole cells were also injected into the rumen and the incorporation of 14C into volatile fatty acids was measured.

3. All the bacterial preparations, including cell walls, were extensively digested and absorbed, Less than 15% of the radioactivity was recovered in the faeces.

4. Up to 20% of the radioactivity injected was recovered in expired carbon dioxide with only 2.4–8.1% passing through the glucose pool.

5. It has been calculated that under the conditions of the experiment 18.5 % of the total glucose entering the body pool of glucose in 24 h was derived from bacterial carbon.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

Annison, E. F., Brown, R. E., Leng, R. A., Lindsay, D. B. & West, C. E. (1967). Biochem. J. 104, 135.CrossRefGoogle Scholar
Annison, E. F., Leng, R. A., Lindsay, D. B. & White, R. R. (1963). Biochem. J. 88, 248.CrossRefGoogle Scholar
Annison, E. F. & White, R. R. (1961). Biochem. J. 80, 162.CrossRefGoogle Scholar
Armstrong, J. J., Baddiley, J. & Buchanan, J. G. (1960). Biochem. J. 76, 610.CrossRefGoogle Scholar
Bergman, E. N. (1963). Am. J. Physiol. 204, 147.CrossRefGoogle Scholar
Bergman, E. N., Reid, R. S., Murray, M. G., Brockway, J. M. & Whitelaw, F. G. (1965). Biochem. J. 97, 53.CrossRefGoogle Scholar
Bergman, E. N., Roe, W. E. & Kon, K. (1966). Am. J. Physiol. 211, 793.CrossRefGoogle Scholar
Bray, G. A. (1960). Analyt. Biochem. 1, 279.CrossRefGoogle Scholar
Coleman, G. S. (1967). J. gen. Microbiol. 47, 449.CrossRefGoogle Scholar
Corbett, J. L., Leng, R. A. & Young, B. A. (1969). In Energy Metabolism of Farm Animals, p. 177. [Blaxter, K. L., Kielanowski, J. and Greta, Thorbek, editors.] Newcastle upon Tyne: Oriel Press Ltd.Google Scholar
Ford, E J. H. (1963). Biochem. J. 88, 427.CrossRefGoogle Scholar
Heald, P. J. (1951). Br. J. Nutr. 5, 84.CrossRefGoogle Scholar
Hoogenraad, N. J. & Hird, F. J. R. (1970). Br. J. Nutr. 24, 119.CrossRefGoogle Scholar
Huggett, A. St. G. & Nixon, D. A. (1957). Lancet ii, 368.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and its Microbes, p. 319. New York: Academic Press Inc.Google Scholar
Johnson, B. C., Hamilton, T. S., Robinson, W. B. & Garey, J. C. (1944). J. Anim. Sci. 3, 287.CrossRefGoogle Scholar
Jones, G. B. (1965). Analyt. Biochem. 12, 249.CrossRefGoogle Scholar
Krebs, H. A. (1965). In Energy Metabolism, p. 1. [Blaxter, K. L., editor.] New York: Academic Press Inc.Google Scholar
Krebs, H. A. & Yoshida, T. (1963). Biochem. J. 89, 398.CrossRefGoogle Scholar
Kronfeld, D. S. & Simesen, M. G. (1961). Am. J. Physiol. 201, 639.CrossRefGoogle Scholar
Leng, R. A. & Annison, E. F. (1963). Biochem. J. 86, 319.CrossRefGoogle Scholar
Leng, R. A. & Leonard, G. J. (1965). Br. J. Nutr. 19, 469.CrossRefGoogle Scholar
Leng, R. A., Steel, J. W. & Luick, J. R. (1967). Biochem. J. 103, 785.CrossRefGoogle Scholar
McNaught, M. L., Smith, J. A. B., Henry, K. M. & Kon, S. K. (1950). Biochem. J. 46, 32.CrossRefGoogle Scholar
Marston, H. R. (1948). Aust. J. scient. Res. B 1, 93.Google Scholar
Martin, H. H. (1966). A. Rev. Biochem. 35, 457.CrossRefGoogle Scholar
Minson, D. J. & Cowper, J. L. (1966). Br. J. Nutr. 20, 757.CrossRefGoogle Scholar
Patterson, M. S. & Greene, R. C. (1965). Analyt. Chem. 37, 854.CrossRefGoogle Scholar
Portugal, A. V. & Sutherland, T. M. (1966). Nature, Lond. 209, 510.CrossRefGoogle Scholar
Reed, F. M., Moir, R. J. & Underwood, E. J. (1949). Aust. J. scient. Res. B 2, 304.Google Scholar
Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T. & Britten, R. J. (1955). Publs Carnegie Instn no. 607.Google Scholar
Salton, M. R. J. & Pavlik, J. G. (1960). Biochim. biophys. Acta 39, 398.CrossRefGoogle Scholar
Tempest, D. W., Dicks, J. W. & Ellwood, D. C. (1968). Biochem. J. 106, 237.CrossRefGoogle Scholar
Walker, D. J. & Nader, C. J. (1968). Appl. Microbiol. 16, 1124.CrossRefGoogle Scholar
White, R. G., Steel, J. W., Leng, R. A. & Luick, J. R. (1969). Biochem. J. (In the Press.)Google Scholar
Young, B. A. & Webster, M. E. D. (1963). Aust. J. agric. Res. 14, 867.CrossRefGoogle Scholar