Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T21:09:03.588Z Has data issue: false hasContentIssue false

Use of naturally enriched mixed food in 13C breath tests applied in young sucking calves

Published online by Cambridge University Press:  09 March 2007

Cornelia C. Metges
Affiliation:
Lehrstuhl für Allgemeine Chemie und Biochemie and TU München, D-8050 Freising-Weihenstephan, Germany
Hanns-Ludwig Schmidt
Affiliation:
Lehrstuhl für Allgemeine Chemie und Biochemie and TU München, D-8050 Freising-Weihenstephan, Germany
Hans Eichinger
Affiliation:
Lehrstuhl für Tierzucht, TU München, D-8050 Freising-Weihenstephan, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Utilization of three milk diets including cream, casein or whey, each naturally labelled with 13C (1 mmol 13C excess) from C4 sources, by six young male calves of the Deutsche Fleckvieh breed was investigated in a Latin-square split-plot design. Each milk diet was examined under resting conditions and during a short period of physical exercise on a treadmill. δ13C values (‰) in carbon dioxide in expired air were measured at intervals of about 1 h during 6·5 h after food intake. Expired air samples for CO2 isolation, subsequent isotopic analysis, measurement of CO2 production and respiratory quotient were taken at about hourly intervals and 13C recovery rates over 6·5 h were calculated. Feeding milk containing enriched milk casein, cream, or whey resulted in maximal significant 13C enrichments over background (δ13C) in CO2 of +1, +2·4 and +2·2‰, and recovery rates of 3·6, 9·9 and 12·2% respectively. This comparison shows the different kinetic behaviour of the main nutrients during the oxidation in tissues. The short exercise period (5 min at 1 J/s per kg body-weight + 5 min at 2 J/s per kg body-weight) did not influence the recovery rates significantly. However, after 10 min of muscular exercise there was a brief decrease in δ13C value of expired air which disappeared within the first 5 min of rest. These experiments demonstrate for the first time the applicability of the 13C breath test with naturally enriched diets in animal nutrition research and that quantitative results may be obtained.

Type
Metabolism in the Young Calf
Copyright
Copyright © The Nutrition Society 1992

References

Barrie, A., Bricout, J. & Koziet, J. (1984). GC stable isotope ratio analysis at natural abundance levels. Biomedical Mass Spectrometry 11, 583589.CrossRefGoogle Scholar
Boutton, T. W., Tyrrell, H. F., Patterson, B. W., Varga, G. A. & Klein, P. D. (1988). Carbon kinetics of milk formation in Holstein cows in late lactation. Journal of Animal Science 66, 26362645.CrossRefGoogle ScholarPubMed
Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133149.CrossRefGoogle Scholar
De Niro, M. J. & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495506.Google Scholar
Duchesne, J., Lacroix, M. & Mosora, F. (1982). Use of the 13C/12C breath test to study sugar metabolism in animals and men. In Proceedings of 4th International Conference on Stable Isotopes pp. 399407 [Schmidt, H.-L., Foerstel, H. and Heinzinger, K. editors]. Amsterdam: Elsevier Scientific Publication Company.Google Scholar
Elia, M. & Livesey, G. (1988). Theory and validity of indirect calorimetry during net lipid synthesis. American Journal of Clinical Nutrition 47, 591607.CrossRefGoogle ScholarPubMed
Ghoos, Y., Hiele, M., Rutgeerts, P. & Vantrappen, G. (1988). Casein digestion in normal subjects and patients with pancreatic disease, studied with a 13CO2 breath test. Gastroenterology 93, A145.Google Scholar
Ghoos, Y., Rutgeerts, P. & Vantrappen, G. (1986a). 13CO2-breath tests in nutritional diagnosis: Present applications and future possibilities. In Clinical Nutrition and Metabolic Research. Proceedings of 7th Congress of ESPEN, Munich pp. 192207 [Dietze, G. J., Gruenert, A., Kleinberger, G.and Wolfram, G., editors]. Basel: Karger.Google Scholar
Ghoos, Y., Vantrappen, G., Rutgeert, P., Eggermont, E. & Carchon, H. (1986b). The 13C lactose breath test using naturally labelled lactose for the diagnosis of lactose malabsorption. Gastroenterology 90, 1426.Google Scholar
Giesecke, D. & Henderickx, H. K. (1973). Biologie und Biochemie der mikrobiellen Verdauung (Biology and Biochemistry of Microbial Digestion). Munich, Bern and Vienna: BLV Verlagsgesellschaft.Google Scholar
Gill, J. L. (1981). Design and Analysis of Experiments. Ames, Iowa: Iowa State University Press.Google Scholar
Hatch, M. D. & Slack, C. R. (1970). Photosynthetic CO2-fixation pathways. Annual Reviews of Plant Physiology 21, 141162.CrossRefGoogle Scholar
Hiele, M., Ghoos, Y., Rutgeerts, P., Vantrappen, G., Carchon, H. & Eggermont, E. (1988). A 13CO2 breath test using naturally 13C-enriched lactose for detecting lactase deficiency in patients with gastrointestinal symptoms. Journal of Laboratory and Clinical Medicine 112, 193200.Google Scholar
Jones, R. J., Ludlow, M. M., Troughton, J. H. & Blunt, C. G. (1981). Changes in the natural isotope ratios of the hair from steers fed diets of C4, C3 and C4 species in sequence. Search 12, 8587.Google Scholar
Klein, P. D. & Klein, R. E. (1985). Applications of stable isotopes to pediatric nutrition and gastroenterology: measurement of nutrient absorption and digestion using 13C. Journal of Pediatric Gastroenterology and Nutrition 4, 919.CrossRefGoogle ScholarPubMed
Krzentowski, G., Pirnay, F., Luyckx, A. S., Lacroix, M., Mosora, F. & Lefebvre, P. J. (1983). Effect of physical training on the oxidation of an oral glucose load at rest: A naturally labelled 13C-glucose study. Diabète et Métabolisme 9, 112115.Google Scholar
Lacroix, M., Mosora, F., Pontus, M., Lefebvre, P., Luyckx, A. & Lopez-Habib, G. (1973). Glucose naturally labelled with carbon-13: Use for metabolic studies in man. Science 181, 445446.CrossRefGoogle ScholarPubMed
Linzell, J. L. (1974). The use of isotopes in the study of milk secretion. Proceedings of the Nutrition Society 33, 1723.Google Scholar
Matthews, D. E. & Bier, D. M. (1983). Stable isotope methods for nutritional investigations. Annual Review of Nutrition 3, 309339.Google Scholar
Metges, C. C. (1988). Untersuchungen zum Energie – und Substratstoffwechsel von Menschen und Wiederkäuern mit dem 13C-Atemtest auf der Basis von natürlich und synthetisch 13C-markierten Nährstoffen (Investigations of energy and substrate metabolism of humans and ruminants based on naturally and synthetically 13C-labelled food). PhD Thesis. Fakultät für Landwirtschaft und Gartenbau der Technischen Universität München.Google Scholar
Metges, C. C., Kempe, K. & Schmidt, H.-L. (1990). Dependence of the carbon isotope contents of breath carbon dioxide, milk, serum and rumen fermentation products on the δ13C value of food in dairy cows. British Journal of Nutrition 63, 187196.Google Scholar
Metges, C. C. & Wolfram, G. (1990). Möglichkeiten und Grenzen des 13C-Atemtests mit natürlich markierten Nährstoffen (Possibilities and limits of 13C breath tests with naturally enriched nutrients). Infusionstherapie 17, Suppl. 1, 34.Google Scholar
Metzler, S., Stobbe, E., Kranz, Ch., Schmidt, H.-L., Winkler, F. J. & Wolfram, G. (1983). Einfluβ des natürlichen Isotopengehaltes von Nährstoffen auf den Untergrund bei 13C-Atemtests (Influence of natural isotope content in food on the background of 13C breath tests). Zeitschrift für Ernährungswissenschaft 22, 107115.Google Scholar
Minson, D. J., Ludlow, M. M. & Troughton, J. H. (1975). Differences in natural isotope ratios of milk and hair from cattle grazing tropical and temperate pastures. Nature 256, 602.Google Scholar
Mosora, F., Lacroix, M., Luyckx, A., Pallikarakis, N., Pirnay, F., Krzentowski, G. & Lefebvre, P. (1981). Glucose oxidation in relation to size of the oral glucose loading dose. Metabolism 30, 11431149.CrossRefGoogle ScholarPubMed
Mosora, F., Lefebvre, P., Pirnay, F., Lacroix, M., Luyckx, A. & Duchesne, J. (1976). Quantitative evaluation of the oxidation of an exogenous load using naturally labelled 13C-glucose. Metabolism 25, 15751582.CrossRefGoogle Scholar
Nakamura, K., Schoeller, D. A., Winkler, F. J. & Schmidt, H.-L. (1982). Geographical variations in the carbon isotope composition of the diet and hair in contemporary man. Biomedical Mass Spectrometry 9, 390394.CrossRefGoogle ScholarPubMed
O'Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry 20, 553567.Google Scholar
Pelletier, G., Tyrrell, H. F., Chevalier, R., Hillaire-Marcel, C. & Gagnon, M. (1984). Stable isotope content of various tissues in calves. Canadian Journal of Animal Science 64, Suppl., 124126.CrossRefGoogle Scholar
Ravussin, E., Pahud, P., Doerner, A., Arnaud, M. J. & Jequier, E. (1980). Carbohydrate utilization in obese subjects after an oral load of 100 g naturally-labelled [13C]glucose. British Journal of Nutrition 43, 281288.CrossRefGoogle ScholarPubMed
SAS (1985a). SAS User's Guide: Basics; Version 5. Cary, NC: Statistical Analysis System Institute Inc.Google Scholar
SAS (1985b). SAS User's Guide: Statistics; Version 5. Cary, NC: Statistical Analysis System Institute Inc.Google Scholar
Schmelz, E. & Schmidt, H.-L. (1984). Stable isotope-labelled molecules: indispensable tools in clinical diagnosis, pharmacology and nutritional sciences. Pharmacy International 5, 153157.Google Scholar
Schmidt, H.-L. & Metges, C. C. (1986). Variation of the natural isotope abundance in diet – causes of artifacts or the base of new possibilities in stable tracer work? In Clinical Nutrition and Metabolic Research. Proceedings of 7th Congress ESPEN, Munich pp. 157168 [Dietze, G.J., Gruenert, A., Kleinberger, G. and Wolfram, G., editors]. Basel: Karger.Google Scholar
Schoeller, D. A., Brown, C., Nakamura, A., Mazzeo, R. S., Brooks, G. A. & Budinger, T. F. (1984). Influence of metabolic fuel on the 13C/12C ratio of breath CO2. Biomedical Mass Spectrometry 11, 557561.Google Scholar
Schoeller, D. A., Schneider, J. F., Solomons, N. W., Watkins, J. B. & Klein, P. D. (1977). Clinical diagnosis with the stable isotope 13C in CO2 breath test: methodology and fundamental considerations. Journal of Laboratory and Clinical Medicine 90, 412421.Google Scholar
Schroeder, G. & Ben-Ghedalia, D. (1986). The fate of dietary components in sheep digesta as indicated by stable carbon isotopes. Nutrition Reports International 34, 691699.Google Scholar
Schroeder, G. & Plavnik, I. (1984). The use of stable carbon in measuring the transfer of macronutrients in poultry. Nutrition Reports International 30, 359365.Google Scholar
Tyrrell, H. F., Pelletier, G., Chevalier, R. & Hillaire-Marcel, C. (1984). Use of carbon 13 as tracer in metabolism studies. Canadian Journal of Animal Science 64, Suppl., 127129.Google Scholar
Wahren, J. (1977). Glucose turnover during exercise in man. Annals of New York Academy of Sciences 301, 4555.Google Scholar
Winkler, F. J. & Schmidt, H.-L. (1980). Einsatzmöglichkeiten der 13C-Isotopen-Massenspektrometrie in der Lebensmitteluntersuchung (Application of 13C mass spectrometry in the analysis of food). Zeitschrift für Lebensmitteluntersuchung und Forschung 17, 8594.Google Scholar
Wolfe, R. R., Shaw, J. H. F., Nadel, E. R. & Wolfe, M. H. (1984). Effect of substrate intake and physiological state on background 13CO2 enrichment. Journal of Applied Physiology 56, 230234.CrossRefGoogle ScholarPubMed