Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T11:17:28.176Z Has data issue: false hasContentIssue false

Urea synthesis and degradation in sheep given pelleted-grass diets containing flaked barley

Published online by Cambridge University Press:  09 March 2007

B. W. Norton
Affiliation:
Department of Agricultural Biochemistry and Nutrition, School of Agriculture, The University of Newcastle upon Tyne, 7RU NE1
J. B. Mackintosh
Affiliation:
Department of Agricultural Biochemistry and Nutrition, School of Agriculture, The University of Newcastle upon Tyne, 7RU NE1
D. G. Armstrong
Affiliation:
Department of Agricultural Biochemistry and Nutrition, School of Agriculture, The University of Newcastle upon Tyne, 7RU NE1
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Three sheep fitted with rumen and oesophageal cannulas were given hourly the following diets in successive experiments: 1000 g pelleted-grass cubes/d (diet A) and 700 g pelleted-grass cubes plus 300 g flaked barley/d (diet B).

2.During the final week of each 4-week dietary regimen, a balance trial was conducted and on separate days each sheep was continuously infused with [14C]urea and NaH14CO3 intravenously and NaH14CO3 intraruminaily. C transfer rates between blood urea, blood bicarbonate and rumen bicarbonate pools were calculated from the specific radioactivity of urea and bicarbonate sampled and isotope infusion rate during each experimental period. In the same period, an oral infusion of 51Cr-EDTA was maintained and salivary flow rate and composition determined from samples collected from the oesophageal fistula.

3. The inclusion of flaked barley in the pelleted-grass diet significantly (P < 0·01) increased the apparent digestibility of organic matter (0·069), apparently digestible organic matter intake and nitrogen balance, and increased the efficiency cf dietary N utilization from 0·059 (diet A) to 0·290 (diet B). Increased N balance was the result of a significant (P) < 0·01 reduction in urinary urea excretion.

4. The rumen fluid of sheep given diet A had higher pH and bicarbonate concentrations but lower butyric acid concentrations than that of sheep given diet B. There was no significant effect of diet on total volatile fatty-acid or ammonia concentrations in rumen fluid, or on osmolaiity and rumen fluid dilution rate. The irreversible loss of bicarbonate from rumen fluid was markedly increased when flaked barley was included in the diet, with most of the loss occurring directly from rumen fluid.

5. Sheep given diet A had higher salivary secretion rates (18·8 l/d) than those given diet B (12·7 l/d), and with the exception of urea, there was no effect of diet on the concentrations of total N, protein N, alpha;-amino-N, uric acid-N or bicarbonate in saliva. Urea concentrations in saliva were significantly correlated (r20·64) with blood urea concentrations, but not with salivary flow rate. Salivary secretions contributed 2·2 and 1·4 gN/d to the rumen of sheep given diets A and B respectively, with urea forming only 45–33% of the total N secreted.

6. When flaked barley was included in the pelleted-grass diet, there was a significant (P < 0·01) decrease in urea synthesis rate (diet A 20·0 g N/d, diet B 9·7 g N/d), a significant increase in amount (diet A 2·3 g N/d. diet B 3·0 g N/d) and proportion (diet A 0·024, diet B 0·57) of recycled urea degraded in the rumen. The permeability of the rumen wall to urea was also significantly increased in sheep given the flaked barley diet (diet A 1·35 g N/d, diet B 2·45 g N/d).

7. A model of urea metabolism in sheep given each diet is described, and the mechanisms by which flaked barley inclusion increased urea recycling to the rumen and the efficiency of dietary N utilization are discussed.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Slough: Commonwealth Agricultural Bureau.Google Scholar
Armstrong, D. G. (1980). The 2nd Tom Miller Memorial Lecture. The North of Scotland College of Agriculture.Google Scholar
Ash, R. W. & Dobson, A. (1963). J. Physiol., Lond. 169, 39.CrossRefGoogle Scholar
Chamberlain, D. G., Thomas, P. C. & Anderson, F. J. (1980). Proc. Nutr. Soc. 39, 29A.Google Scholar
Clarke, R. T. J. & Reid, C. S. W. (1974). J. Dairy Sci. 57, 753.CrossRefGoogle Scholar
Cocimano, M. R. & Leng, R. A. (1967). Br. J. Nutr. 21, 353.CrossRefGoogle Scholar
da Silva, J. F. Coelho (1971). The digestion of nitrogenous constituents in forage and forage-cereal diets by adult sheep, PhD Thesis, University of Newcastle upon Tyne.Google Scholar
Cottyn, B. G. & Boucque, C. V. (1968). J. Ag. Fd Chem 16, 105.CrossRefGoogle Scholar
Engelhardt, W. V., Hinderer, S. & Wipper, E. (1978). In Ruminant Digestion and Feed Evaluation [Osbourn, D. E., Beever, D. E. and Thomson, D. J., editors]. London: Agricultural Research Council.Google Scholar
Hemsley, J. A., Hogan, J. P. & Weston, R. H. (1975). Aust. J. agric. Res. 26, 715.CrossRefGoogle Scholar
Henry, R. J., Cannon, D. C. & Winkelman, J. W. (1974). Clinical Chemistry – Principles and Techniques. New York: Harper and Row.Google Scholar
Hinderer, S. & Engelhardt, W. V. (1975). Comp. Biochem. Physiol. 52A, 619.CrossRefGoogle Scholar
Hinks, N. T., Mills, S. C. & Setchell, B. P. (1966). Analyt. Biochem. 17, 551.CrossRefGoogle Scholar
Hogan, J. P. (1961). Aust. J. Biol. Sci. 14, 448.CrossRefGoogle Scholar
Houpt, T. R. (1957). Physiologist, Wash. 1, 43.Google Scholar
Houpt, T. R. (1970). In Physiology of Digestion and Metabolism in the Ruminant [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Ishaque, M., Thomas, P. C. & Rook, J. A. F. (1971). Proc. Nutr. Soc. 30, 1A.Google Scholar
Kay, R. N. B. (1960). J. Physiol. 150, 515.CrossRefGoogle Scholar
Kay, R. N. B. (1966). Wld Rev. Nutr. Dietet. 6, 292.CrossRefGoogle Scholar
Kennedy, P. M. (1980). Br. J. Nutr. 43, 125.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1978) Br. J. Nutr. 39, 105.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1980) Can. J. Anim. Sci. 60, 205.CrossRefGoogle Scholar
Leng, R. A. (1973). In Chemistry and Biochemistry and Herbage, vol. 3, p. 107 [Bailey, R. W. and Butler, G. W., editors]. New York: Academic Press.Google Scholar
McMeniman, N. P., Ben Ghedalia, D. & Armstrong, D. G. (1976). In Protein Metabolism and Nutrition, p. 217 [Cole, D. J. A., editor]. London: Butterworths.Google Scholar
MacRae, J. C., Milne, J. A., Wilson, S. & Spence, A. M. (1979). Br. J. Nutr. 42, 525.CrossRefGoogle Scholar
MacRae, J. C., Wilson, S., Milne, J. A. & Spence, M. (1977). Proc. Nutr. Soc. 37, 16A.Google Scholar
Masson, M. J. & Phillipson, A. T. (1951). J. Physiol., Lond. 113, 189.CrossRefGoogle Scholar
Meggison, P. A., McMeniman, N. P. & Armstrong, D. G. (1979). Proc. Nutr. Soc. 38, 146A.Google Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 27, 177.CrossRefGoogle Scholar
Nolan, J. V., Norton, B. W. & Leng, R. A. (1976). Br. J. Nutr. 35, 127.CrossRefGoogle Scholar
Nolan, J. V. & Stachiw, (1979). Br. J. Nutr. 42, 63.CrossRefGoogle Scholar
Norton, B. W., Janes, A. N. & Armstrong, D. G. (1982). Br. J. Nutr. 48, 265.CrossRefGoogle Scholar
Norton, B. W., Murray, R. M., Entwistle, K. W., Nolan, J. V., Ball, F. M. & Leng, R. A. (1978). Aust. J. agric. Res. 29, 595.CrossRefGoogle Scholar
Oldham, J. D., Swan, H. & Lewis, D. (1973). Proc. Nutr. Soc. 32, 89A.Google Scholar
Ørskov, E. R. & Fraser, C. (1975). Br. J. Nutr. 34, 493.CrossRefGoogle Scholar
Potthast, V., Prigge, H. & Pfeffer, H. (1977). Z. Tierphysiol. Tierenähr Futtermittelk. 38, 338.Google Scholar
Rowe, J. B., Nolan, J. V. & Leng, R. A. (1978). Proc. Aust. Soc. Anim. Prod. 12, 136.Google Scholar
Simonnet, H., Le Bars, H. & Molle, J. (1957). C.r. hebd. Séanc. Acad. Sci., Paris 224, 943.Google Scholar
Somers, M. (1961 a). Aust. J. exp. Biol. 39, 111.CrossRefGoogle Scholar
Somers, M. (1961 b). Aust. J. exp. Biol. 39, 123.CrossRefGoogle Scholar
Stevens, C. E. (1970). In Physiology of Digestion and Metabolism in the Ruminant [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Sutton, J. D. (1979). In Digestive Physiology and Metabolism in Ruminants [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press.Google Scholar
Thorlacius, S. O., Dobson, A. J. & Sellars, A. F. (1971). Am. J. Physiol. 220, 162.CrossRefGoogle Scholar
Thornton, R. F. (1970). Aust. J. agric. Res. 21, 323.CrossRefGoogle Scholar
Tribe, D. E. & Peel, L. J. (1963). Aust. J. agric. Res. 14, 330.CrossRefGoogle Scholar
Van Dyne, G. M. & Torell, D. T. (1964). J. Range Mgmt. 17, 7.CrossRefGoogle Scholar
Varady, J., Boda, K.Havassy, I., Bajo, M. & Tomas, J. (1967). Physiol. Bohemoslov. 16, 571.Google Scholar
Wallace, R. J., Cheng, K. J., Dinsdale, D. & Ørskov, E. R. (1979). Nature, Lond. 279, 424.CrossRefGoogle Scholar
White, R. G., Steel, J. W., Leng, R. A. & Luick, J. R. (1969). Biochem. J. 114, 203.CrossRefGoogle Scholar