Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T01:14:53.490Z Has data issue: false hasContentIssue false

Undernutrition during the preweaning period changes calcium ATPase and ADPase activities of synaptosomal fractions of weanling rats

Published online by Cambridge University Press:  09 March 2007

J. B. T. ROCHA
Affiliation:
Departamento de Bioquimica, Instituto de Biociencias, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre 90050, RS, Brazil
C. F. Mello
Affiliation:
Departamento de Bioquimica, Instituto de Biociencias, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre 90050, RS, Brazil
J. J. F. Sarkis
Affiliation:
Departamento de Bioquimica, Instituto de Biociencias, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre 90050, RS, Brazil
R. D. Dias
Affiliation:
Departamento de Bioquimica, Instituto de Biociencias, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre 90050, RS, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The presence of activities that hydrolyse externally added ATP to adenosine in synaptosomal preparations from various sources is well demonstrated. The hydrolysis of ATP to AMP can be mediated either by the concerted action of enzymes or by an ATP-diphosphohydrolase (EC 3.6.1.5; apyrase). Undernutrition during the preweaning period can delay the development of several enzymes involved in the metabolism of neurotransmitters or neuronal function. In young rats, the presence of an apyrase in synaptosomal preparations from cerebral cortex was investigated. The results suggested that the hydrolysis of externally added ATP and ADP can be mediated by a single enzyme. The effects of preweaning undernutrition on the hydrolysis of ATP and ADP were also investigated. In weanling rats, previous undernutrition caused a decrease of about 20% in the hydrolysis of both substrates in synaptosomal fractions.

Type
Maternal Nutrition and Metabolism of Offspring
Copyright
Copyright © The Nutrition Society 1990

References

Abdel-Latif, A. A., Brody, J. & Ramahi, H. (1970). Studies of Na+, K+ -ATPase in nerve endings and appearance of electrical activity in developing rat brain. Journal of Neurochemistry 14, 11331141.CrossRefGoogle Scholar
Adlard, B. P. F. & Dobbing, J. (1971). Vulnerability of developing brain. III. Development of four enzymes in the brains of normal and undernourished rats. Brain Research 28, 97107.CrossRefGoogle Scholar
Adlard, B. P. F. & Dobbing, J. (1972). Vulnerability of developing brain. Regional acetylcholinesterase activity in the brains of adult rats undernourished in early life. British Journal of Nutrition 38, 139143.CrossRefGoogle Scholar
Chanez, C., Barone, P., Flexor, M.-R. & Bourre, J.-M. (1988). Na+, K+-ATPase activity in synaptosomes and myelin of developing control and intra-uterine growth retarded rats: effects of lead and serotonin. Neurochemical International 12, 3945.CrossRefGoogle ScholarPubMed
Cragg, B. G. (1972). The development of cortical synapses during starvation in the rat. Brain Research 73, 139144.Google Scholar
Dixon, M. & Webb, E. C. (1979). Enzymes. 3rd ed. New York: Academic Press.Google Scholar
Dowdall, M. J. (1978). Adenine nucleotide in cholinergic transmission: presynaptic aspects. Journal de Physiologic 74, 497501.Google ScholarPubMed
Dutra-Filho, C. S., Wannamacher, C. M. D., Pires, R. F., Gus, G., Kalil, A. M. & Wajner, M. (1989). Reduced locomotor activity of rats made histidinemic by injection of histidine. Journal of Nutrition 119, 12231227.CrossRefGoogle ScholarPubMed
Dyson, S. E. & Jones, D. G. (1976). Some effects of undernutrition on synaptic development—a quantitative ultrastructural study. Brain Research 114, 365376.CrossRefGoogle ScholarPubMed
Ellman, G. L., Courtney, K. D., Andres, V. Jr & Featherstone, R. M. (1961). A new and rapid calorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7, 8895.CrossRefGoogle Scholar
Fiedler, E. P., Marks, M. J. & Collins, A. (1987). Postnatal development of cholinergic enzymes and receptors in mouse brain. Journal of Neurochemistry 49, 983990.CrossRefGoogle ScholarPubMed
Fiske, C. H. & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry 66, 375400.CrossRefGoogle Scholar
Grondal, E. J. & Zimmerman, H. (1986). Ectonucleotidase activities associated with cholinergic synaptosomes isolated from Torpedo electric organ. Journal of Neurochemistry 47, 871881.CrossRefGoogle ScholarPubMed
Harper, F., Lamy, F. & Calvert, R. (1978). Some properties of Ca2+ and/or Mg2+ -requiring nucleoside di- and triphosphatase(s) associated with the membranes of rat pancreatic zymogen granules. Canadian Journal of Biochemistry 56, 565576.CrossRefGoogle ScholarPubMed
Hubscher, G. & West, G. R. (1965). Specific assays of some phosphatases in subcellular fractions of small intestinal mucosa. Nature 205, 779780.CrossRefGoogle Scholar
Keller, F. & Zimmerman, H. (1983). Ecto-adenosine triphosphatase activity at the cholinergic nerve endings of the Torpedo electric organ. Life Sciences 33, 26352641.CrossRefGoogle ScholarPubMed
Kissane, J. Q. & Hawrylewicz, E. S. (1975). Development of Na+, K+ -ATPase in neonatal rat brain synaptosomes after protein malnutrition. Pediatric Research 9, 146150.CrossRefGoogle ScholarPubMed
Krueger, B. K., Forn, J. & Greengard, P. (1977). Depolarization induced phosphorylation of specific proteins mediated by calcium ion influx in rat brain synaptosomes. Journal of Biological Chemistry 252, 27642773.CrossRefGoogle ScholarPubMed
LeBel, D., Poirier, G. G., Phaneuf, S., St Jean, P., Laliberté, J. P. & Beaudoin, R. (1980). Characterization and purification of a calcium-sensitive ATP diphosphohydrolase from pig pancreas. Journal of Biological Chemistry 255,12271233.CrossRefGoogle ScholarPubMed
Lienhard, G. E. & Secemski, H. (1973). P, P-di(adenosine-5')-pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. Journal of Biological Chemistry 248, 11211123.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Mello, C. F., Rotta, F. T., Souza, D. O. & Rocha, J. B. T. (1989). Undernutrition during suckling and latent learning ability of rehabilitated adult male rats. Behavioral and Neural Biology 52, 3950.CrossRefGoogle ScholarPubMed
Miller, M., Leahy, J. P., Stern, W. C., Morgane, P. J. & Resnick, O. (1977). Tryptophan availability: relation to elevated brain serotonin in developmentally protein-malnourished rats. Experimental Neurology 57, 142157.CrossRefGoogle ScholarPubMed
Morgan, I. G. (1976). Synaptosomes and cell separation. Neuroscience 1, 159165.CrossRefGoogle ScholarPubMed
Nagata, H., Mimori, Y., Nakamura, S. & Kameyama, M. (1984). Regional and subcellular distribution in mammalian brain of the enzymes producing adenosine. Journal of Neurochemistry 42, 10011007.CrossRefGoogle ScholarPubMed
Nagy, A. & Delgado-Escueta, A. V. (1984). Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). Journal of Neurochemistry 43, 11141123.CrossRefGoogle ScholarPubMed
Nagy, A., Shuster, T. A. & Delgado-Escueta, A. V. (1986). Ecto-ATPase of mammalian synaptosomes: identification and enzyme characterization. Journal of Neurochemistry 47, 976986.CrossRefGoogle Scholar
Nagy, A., Shuster, T. A. & Rosenberg, M. O. (1983). Adenosine triphosphatase activity at the external surface of chicken brain synaptosomes. Journal of Neurochemistry 40, 226234CrossRefGoogle ScholarPubMed
Robain, O. & Ponsot, G. (1978). Effects of undernutrition on glial maturation. Brain Research 149, 379397.CrossRefGoogle ScholarPubMed
Salas, M., Diaz, S. & Nieto, A. (1974). Effects of neonatal food deprivation on cortical spines dendritic development of the rat. Brain Research 73, 139144.CrossRefGoogle ScholarPubMed
Sarkis, J. J. F., Guimaraes, J. A. & Ribeiro, J. M. C. (1986a). Salivary apyrase of Rhodnius prolixus: kinetics and purification. Biochemical Journal 233, 885891.CrossRefGoogle ScholarPubMed
Sarkis, J. J. F., Schadeck, R. J. G., Dias, R. D., Araujo, H. M. M. & Souza, D. O. (1986b). Ecto-apyrase activity in the synaptosomal fraction of hypothalamus of adult rats. Anais do Academia Brasileira de Ciencias 58, 598599.Google Scholar
Schadeck, R. J. G., Sarkis, J. J. F., Dias, R. D., Araujo, H. M. M. & Souza, D. O. (1989). Synaptosomal apyrase in the hypothalamus of adult rats. Brazilian Journal of Medical and Biological Research 22, 303314.Google ScholarPubMed
Sereni, F., Principi, N., Perteletti, L. & Sereni, L. P. (1966). Undernutrition and the developing rat brain. Influence on acetylcholinesterase and succinic acid dehydrogenase activities and on norepinephrine and 5-OH-tryptamine tissue concentrations. Biology of the Neonate 10, 254265.CrossRefGoogle ScholarPubMed
Sorensen, R. G. & Mahler, H. R. (1981). Calcium-stimulated adenosine triphosphatase in synaptic membranes. Journal of Neurochemistry 37, 14071418.CrossRefGoogle ScholarPubMed
Sorensen, R. G. & Mahler, H. R. (1982). Localization of endogenous ATPase in the nerve terminal. Journal of Bioenergetics and Biomembranes 14, 527547.CrossRefGoogle ScholarPubMed
Stern, W. C., Miller, M., Forbes, W. B., Morgane, P. J. & Resnick, O. (1975). Ontogeny of the levels of biogenic amines in various parts of the brain and in peripheral tissues in normal and protein malnourished rats. Experimental Neurology 49, 314326.CrossRefGoogle ScholarPubMed
Vanella, A., Barcellona, M. L., Avitabile, M., Avola, R., Ragusa, N., Serra, I. & Giuffrida, A. M. (1983). Effect of undernutrition on some enzymes of purine metabolism in different regions of developing rat brain. Journal of Neuroscience Research 9, 183191.CrossRefGoogle ScholarPubMed
Vendite, D., Rocha, J. B. T. & Souza, D. O. (1988). Effects of undernutrition during suckling and of training on the hypothalamic β-endorphin of young and adult rats. Peptides 9, 751755.CrossRefGoogle ScholarPubMed
Vernadakis, A. & Arnold, E. B. (1980). Age-related changes in neuronal and glial enzyme activities. In Advances in Cellular Neurobiology, Vol. 1, pp. 229283 [Fedoroff, S. and Hertz, L., editors]. New York: Academic Press.Google Scholar
Vitiello, F. & Gombos, G. (1987). Cerebellar development and nutrition. In Basic and Clinical Aspects of Nutrition and Brain Development, Vol. 16, pp. 99130 [Rassin, D. V., Haber, B. and Drujan, B., editors]. New York: Alan R. Liss.Google Scholar
Whitaker, J. F. (1969). A general colorimetric procedure for the estimation of enzymes which are linked to the NADH-NAD+ system. Clinica Chimica Acta 24, 2337.CrossRefGoogle Scholar
Wiggins, R. C. (1982). Myelin development and nutritional insufficiency. Brain Research Reviews 4, 151175.CrossRefGoogle Scholar