Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T00:50:05.485Z Has data issue: false hasContentIssue false

Twelve generations of marginal protein deficiency

Published online by Cambridge University Press:  25 March 2008

R. J. C. Stewart
Affiliation:
Department of Human Nutrition, London School of Hygiene and Tropical Medicine, London WC1E 7HT
R. F. Preece
Affiliation:
Department of Human Nutrition, London School of Hygiene and Tropical Medicine, London WC1E 7HT
Hilda G. Sheppard
Affiliation:
Department of Human Nutrition, London School of Hygiene and Tropical Medicine, London WC1E 7HT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Colonies of rats have been maintained for twelve generations on diets adequate (dietary-protein energy:total metabolizable energy (NDp:E) 0·I) or marginally deficient in protein (NDp:E 0·068)

2. In the malnourished colony, the proportion of ‘small-for-gestational-age’ offspring was ten times as high as amongst the well-nourished colony, growth was slow, sexual maturation delayed, especially in the females, and, when adult, both sexes were significantly lighter and shorter than adults of the well-nourished colony. Organs, other than the eye, weighed less than those of well-nourished ‘age’ controls, but when expressed relative to body-weight, the brain, pituitary, thyroid, adrenals, testes, thymus and eyes were larger, the pancreas unchanged and the kidneys smaller than those of the well-nourished ‘age’ controls. The relative weight of the liver showed little change, being slightly increased in the males and, like the ovaries, slightly reduced in the females. On a body-weight basis, the brains were about 50% heavier than normal, but in absolute terms were 5–5·5% lighter than those of the well-nourished animals, the cerebellum (10·5% lighter in males and 12·9% lighter in females) being more severely affected than the cerebrum (4% lighter)

3. The young malnourished rats showed increased exploratory activity, transient head tremors and an increased sensitivity to noise, the latter being long-lasting if not permanent. When adult, they showed marked differences in behaviour and learning patterns and it was difficult to attract and hold their attention. In situations demanding a choice the animals were very excited, emitted loud squeals and tried to escape from what was clearly a stressful situation. However, a casual examination of the malnourished adults revealed a rather small, badly groomed, excitable rat without gross abnormalities

4. The findings are discussed in relation to changes found in malnourished human communities.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Agrawal, S. P. & Katiyar, G. P. (1972). Pediat. Clins India 7, 203.Google Scholar
Antonov, A. N. (1947). J. Pediat. 30, 250.CrossRefGoogle Scholar
Chandran, K. & Ambegaokar, S. D. (1959). Indian J. med. Res. 47, 539.Google Scholar
Chow, B. F. & Lee, C.-J. (1964). J. Nutr. 82, 10.CrossRefGoogle Scholar
Cragg, B. G. (1972). Brain 95, 143.CrossRefGoogle Scholar
Dobbing, J. (1974). In Scientific Foundations of Paediatrics p. 565 [Davis, J. A and Dobbing, J., editors]. London: Heinemann Medical Books.Google Scholar
Dobbing, J. & Sands, J. (1973). Archs Dis. Childh. 48, 757.CrossRefGoogle Scholar
Drillien, C. M. (1964). The Growth and Development of the Prematurely Born Infant. Edinburgh, London: E & S Livingstone Ltd.Google Scholar
Drillien, C. M. (1969). Archs Dis. Childh. 4, 562.CrossRefGoogle Scholar
Eayrs, J. T. & Horn, G. (1955). Anat. Rec. 121, 53.CrossRefGoogle Scholar
Fitzhardinge, P. M. & Steven, E. M. (1972). Pediatrics, Springfield 50, 50.CrossRefGoogle Scholar
Frisch, R. E. (1972). Pediatrics, Springfield 50, 445.CrossRefGoogle Scholar
Gopalan, C. & Naidu, A. N. (1972). Lancet ii, 1077.CrossRefGoogle Scholar
Gupta, S. R. (1969). Indian J. med. Res. 57, 359.Google Scholar
Gupta, S. R. & Christie, B. (1968). Indian J. med. Res. 56, 114.Google Scholar
Heard, C. R. C. (1966). Diabetes 15, 78.CrossRefGoogle Scholar
Heard, C. R. C. & Stewart, R. J. C. (1971). Hormones 2, 40.Google Scholar
Hertzig, M. E., Birch, H. G., Richardson, S. A. & Tizard, J. (1972). J. Pediat. 49, 814.CrossRefGoogle Scholar
Kahn, E. (1954). Archs Dis. Childh. 29, 256.CrossRefGoogle Scholar
Kennedy, G. C. & Mitra, J. (1963). J. Physiol., Lond. 166, 408.CrossRefGoogle Scholar
Lashley, K. S. (1938). J. gen. Psychol. 18, 123.CrossRefGoogle Scholar
Merat, A. & Dickerson, J. W. T. (1974). Biol. Neonat. 25, 158.CrossRefGoogle Scholar
Milam, D. F. & Darby, W. J. (1945). Sth. med. J., Nashville 38, 117.CrossRefGoogle Scholar
Naismith, D. J. (1969). Proc. Nutr. Soc. 28, 25.CrossRefGoogle Scholar
Naismith, D. J. & Ritchie, C. (1973). Proc. Nutr. Soc. 32, 1A.Google Scholar
Payne, P. R. & Stewart, R. J. C. (1972). Lab. Anim. 6, 135.CrossRefGoogle Scholar
Platt, B. S., Miller, D. S. & Payne, P. R. (1961). In Recent Advances in Human Nutrition p. 351 [Brock, J. F, editor]. London: J. & A. Churchill.Google Scholar
Platt, B. S. & Stewart, R. J. C. (1968). Devl Med. Child Neurol. 10, 3.CrossRefGoogle Scholar
Platt, B. S. & Stewart, R. J. C. (1969). Devl Med. Child Neurol. 11, 174.Google Scholar
Platt, B. S. & Stewart, R. J. C. (1971). Wld Rev. Nutr. Diet. 13, 43.CrossRefGoogle Scholar
Richardson, S. A., Birch, H. G., Grabie, E. & Yoder, K. (1972). J. Hlth Soc. Behav. 13, 276.CrossRefGoogle Scholar
Scrimshaw, N. S. (1964). In Mammalian Protein Metabolism Vol. 2, p. 569 [Munro, H. N and Allison, J. B, editors]. New York, London: Academic Press.CrossRefGoogle Scholar
Smith, C. A. (1947). J. Pediat. 30, 229.CrossRefGoogle Scholar
Stewart, R. J. C. (1965). Wld Rev. Nutr. Diet. 5, 275.CrossRefGoogle Scholar
Stewart, R. J. C. (1972). Pan-Am. Hlth Orgn scient. Publs no. 251, 33.Google Scholar
Stewart, R. J. C. (1973). Nutr. Rep. Int. 7, 487.Google Scholar
Stewart, R. J. C., Merat, A. & Dickerson, J. W. T. (1974). Biol. Neonat. 25, 125.CrossRefGoogle Scholar
Stewart, R. J. C., Preece, R. F. & Sheppard, H. G. (1973 a). Proc. Nutr. Soc. 32, 102A.Google Scholar
Stewart, R. J. C., Preece, R. F. & Sheppard, H. G. (1973 b). Proc. Nutr. Soc. 32, 103A.Google Scholar
Stewart, R. J. C. & Sheppard, H. G. (1971). Br. J. Nutr. 25, 175.CrossRefGoogle Scholar
Turkewitz, G. (1974). Proc. Kittay Foundation Symp. (In the Press.)Google Scholar
Udani, P. M. (1963). Indian J. Child Hlth 12, 593.Google Scholar
Waterlow, J. C. & Alleyne, G. A. O. (1971). In Advances in Protein Chemistry Vol. 25, p. 117 [Anfinsen, C. B, Edsell, J. T. and Richards, F. M, editors]. New York and London: Academic Press Inc.Google Scholar
Wayburne, S. (1968). In Calorie Deficiencies and Protein Deficiencies p. 7 [McCance, R. A and Widdowson, E. M., editors]. London: J. & A. Churchill.Google Scholar
Wiener, G. (1968). J. spec. Educ. 2, 237.CrossRefGoogle Scholar