No CrossRef data available.
Published online by Cambridge University Press: 09 March 2007
Methionine (Met) is usually the first limiting amino acid for sheep and supplements of Met may increase production of wool and meat. The wool response may be due to an increased supply of cysteine (Cys) from transsulfuration (TS) of Met. Met is catabolized through homocysteine to form Cys when the S from Met is transferred to serine (Ser). We hypothesized that providing additional Met would create a deficiency of Ser and that by simultaneously providing Met and Ser, TS and wool growth could be increased more than by providing Met alone. The effects of i.v. infusions of Met and Ser to young Merino lambs on TS, fractional synthesis rate (FSR) of protein in skin, follicle mRNA and wool growth were examined. Following 4 d of constant i.v. infusion of 3 g Met/d, or 10 g Ser/d or both, the isotope tracers: L-[3-13C]CYS, l-[ring-d5]phenylalanine (Phe) and l-[2,3,3-d3]Ser were infused over 8 h to allow for measurements of irreversible loss rate (ILR), and TS in whole body and skin. Skin biopsies were taken for measurement of FSR. Wool growth rate was measured using autoradiography. An infusion of Met significantly (P < 0·05) improved wool growth rate and increased skin FSR, Cys supply from TS and enhanced levels of follicle mRNA (from the K2.10 intermediate filament gene and three gene families encoding keratin associated proteins KAP1, KAP4 and KAP12). The extra Met lowered Ser ILR. The infusion of Ser doubled Ser ILR in the body and increased skin FSR calculated using the Cys tracer in plasma (P < 0·05). However, there were no significant (P > 0·05) changes in TS, skin FSR calculated using the Phe and Ser tracers, follicle mRNA or wool growth rate as a result of Ser infusion. While there were trends towards increased TS and FSR with Ser infusion, the overall lack of significant changes indicates a high capacity for the de novo synthesis of Ser.