Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T11:18:11.387Z Has data issue: false hasContentIssue false

Trace element intakes of women

Published online by Cambridge University Press:  09 March 2007

Rosalind S. Gibson
Affiliation:
Applied Human Nutrition, Department of Family Studies, University of Guelph, Guelph, Ontario, Canada
Cindy A. Scythes
Affiliation:
Applied Human Nutrition, Department of Family Studies, University of Guelph, Guelph, Ontario, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Energy, protein, zinc, copper, manganese, selenium and dietary fibre intakes of 100 pre-menopausal women (mean age 30·0 ± 6·1 years) from a university community, and consuming self-selected diets, were calculated using 3 d dietary records and food composition values. Subjects also collected a 24 h food composite during the 3 d record period for analysis of Zn, Cu and Mn by atomic absorption spectrophotometry. Daily analysed intakes were compared with those calculated from the corresponding record day.

2. Mean daily calculated intakes of energy, protein, Zn, Cu, Mn, Se and dietary fibre were 7·54 ± 1·61 MJ, 74 ± 18 g protein, 10·1 ± 3·3 mg Zn. l·9 ± 0·6 mg Cu, 3·1 ± 1·5 mg Mn, 131 ± 53 μg Se, 19·4 ± 6·6 g dietary fibre.

3. Major food sources for each of the trace elements were (%): Zn meat + substitutes 43, dairy products 23·7; Cu breads and cereals 22, vegetables 21; Mn breads and cereals 47, fruits 12; Se meat + substitutes 38, breads and cereals 30.

4. Highly significant correlations (P = 0·001) were noted for analysed intakes of Zn, Cu and Mn and those calculated from the corresponding record day. Mean calculated intakes were higher (%): Zn 138, Cu 142, Mn 121, than corresponding mean analysed intakes (P = 0·01). However, the mean nutrient densities (mg/MJ) were comparable: Zn analysed 1·2, calculated 1·4; Cu analysed 0·2, calculated 0·2; Mn analysed 0·4, calculated 0·4.

5. All subjects met the Canadian Dietary Standard (CDS) recommended level for Cu but 48% received less than the CDS for Zn, 6% obtaining less than two-thirds of this recommended level. Daily Mn and Se intakes were similar to recent values for North American diets.

Type
Papers of direct reference to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Agriculture Handbook No. 8–1 (rev. 1976). Composition of Foods: Dairy and Egg Products, Raw–Processed–Prepared. Agriculture Research Service. Consumer and Food Economics Institute, USDA.Google Scholar
Agricultural Handbook, No. 8–2 (rev. 1977). Composition of Foods: Spices and Herbs, Raw–Processed–Prepared. Agriculture Research Service. Consumer and Food Economics Institute, USDA.Google Scholar
Agriculture Handbook, No. 8–4 (rev. 1979 a). Composition of Foods: Fats and Oils, Raw–Processed–Prepared. Agriculture Research Service. Consumer and Food Economics Institute, USDA.Google Scholar
Agriculture Handbook, No. 8–5 (rev. 1979 b). Composition of Foods: Poultry Products, Raw–Processed–Prepared. Agriculture Research Service. Consumer and Food Economics Institute, USDA.Google Scholar
Agriculture Handbook, No. 8–6 (rev. 1980 a). Composition of Foods: Soups, Sauces and Gravies, Raw–Processed–Prepared. Agriculture Research Service. Consumer and Food Economics Institute, USDA.Google Scholar
Agriculture Handbook, No. 8–7 (rev. 1980 b). Composition of Foods: Sausages and Luncheon Meats, Raw–Processed–Prepared. Agriculture Research Service. Consumer and Food Economics Institute, USDA.Google Scholar
Allen, K. G. D., Klevay, L. M. & Springer, H. L. (1977). Nutr. Rep int. 16, 227.Google Scholar
Anderson, B. M., Gibson, R. S. & Sabry, J. H. (1981). Am. J. clin. Nutr. 34, 1042.CrossRefGoogle Scholar
Arthur, D. (1972). J. Inst. Can. Sci. Techn. Aliment. 5, 165.CrossRefGoogle Scholar
Cartwright, G. E. & Wintrobe, M. M. (1964). Am. J. clin. Nutr. 14, 224.CrossRefGoogle Scholar
Department of Health & Welfare Canada (1975). Dietary Standard for Canada. Ottawa: Bureau of Nutritional Sciences, Health Protection Branch, Department of National Health & Welfare.Google Scholar
Diskin, C. J., Tomasso, C. L., Alper, J. C., Glaser, M. L. & Fliegel, S. E. (1979). Archs intern. Med. 139, 824.CrossRefGoogle Scholar
Freeland-Graves, J. H., Ebangit, M. L. & Bodzy, P. W. (1980). J. Am. diet. Ass. 77, 648.CrossRefGoogle Scholar
Ganapathy, S. N., Joyner, B. T., Sawyer, D. R. & Hafner, K. M. (1978). In Trace Element Metabolism in Man and Animals, Vol. 4, p. 322. Freising–Weihen–Stephan: Arbeitskreis fur Tierernahrungs-forschung Weihenstephan.Google Scholar
Greger, J. L., Marhefka, S., Huffman, J., Baliger, P., Peterson, T., Zaikis, S. & Sickles, V. (1978). Nutr. Rep. int. 18, 345.Google Scholar
Guthrie, B. & Robinson, M. F. (1977). Br. J. Nutr. 38, 55.CrossRefGoogle Scholar
Hambidge, K. M., Hambidge, C., Jacobs, M. & Baum, J. D. (1972). Pediat. Res. 6, 868.CrossRefGoogle Scholar
Holden, J. M., Wolf, W. R. & Mertz, W. (1979). J. Am. diet. Ass. 75, 23.CrossRefGoogle Scholar
Hunt, I. F., Murphy, N. J., Gomez, J. & Smith, J. C. (1979). Am. J. clin. Nutr. 32, 1511.CrossRefGoogle Scholar
Kirkpatrick, D. C. & Coffin, D. E. (1974). J. Inst. Can. Sci Techn. Alliment. 7, 56.CrossRefGoogle Scholar
Klevay, L. M. (1975). Nutr. Rep. int. 11, 237.Google Scholar
Klevay, L. M., Reck, S. J., & Barcome, D. F. (1979). J. Am. med. Ass. 241, 1916.CrossRefGoogle Scholar
Klevay, L. M., Reck, S. J., Jacob, R. A., Logan, G. M., Monoz, J. M. & Sandstead, H. Y. (1980). Am. J. clin. Nutr. 33, 45.CrossRefGoogle Scholar
Levine, R. A., Streeten, D. H. P. & Doisy, R. J. (1968). Metabolism 17, 114.CrossRefGoogle Scholar
Lyon, T. D. B. & Smith, H. (1979). Br. J. Nutr. 42, 413.CrossRefGoogle Scholar
Marlett, J. A. & Bokram, R. L. (1981). Am. J. clin. Nutr. 34, 335.CrossRefGoogle Scholar
Meiners, C. R., Derise, N. L., Lau, H. C., Crew, M. G., Ritchey, S. J. & Murphy, E. W. (1976). J. agric. Fd Chem. 24, 1126.CrossRefGoogle Scholar
Meranger, J. C. & Smith, D. C. (1972). Can. J. publ. Hlth 63, 53.Google Scholar
Milne, D. B., Schnakenberg, D. D., Johnson, H. L. & Kuhl, G. L. (1980). J. Am. diet. Ass. 76, 41.CrossRefGoogle Scholar
Morris, V. C. & Levander, O. A. (1970). J. Nutr. 100, 1383.CrossRefGoogle Scholar
National Research Council, Food & Nutrition Board (1980). Recommended Dietary Allowances (9th ed.). Washington, DC: National Academy of Sciences.Google Scholar
Oberleas, D. & Harland, B. F. (1977). In Zinc Metabolism. Current aspects in Health and Disease, p. 11 [Prasad, A. S., editor]. New York: Alan R. Liss Inc.Google Scholar
Schlettwein-Gsell, D. & Mommsen-Straub, S. G. (1971 a). Int. Z. Vitam. Forsch. 40, 659.Google Scholar
Schlettwein-Gsell, D. & Mommsen-Straub, S. G. (1971 b). Int. Z. Vitam. Forsch. 41, 269.Google Scholar
Schlettwein-Gsell, D. & Mommsen-Straub, S. G. (1972). Int. Z. Vitam. Forsch. 42, 607.Google Scholar
Schroeder, H. A. (1971). Am. J. clin. Nutr. 24, 562.CrossRefGoogle Scholar
Schroeder, H. A., Nason, A. P., Tipton, I. H. & Balassa, J. J. (1966). J. chron. Dis. 19, 1007.CrossRefGoogle Scholar
Southgate, D. A. T., Bailey, B., Collinson, E. & Walker, A. F. (1976). J. human Nutr. 30, 303.Google Scholar
Srivastava, U. S. & Nadeau, M. H. (1978). Nutr. Rep. int. 18, 325.Google Scholar
Srivastava, U. S., Nadeau, M. H. & Carbonneau, N. (1977). J. Can. diet. Ass. 38, 302.Google Scholar
Thompson, J. N., Erdy, P. & Smith, D. C. (1975). J. Nutr. 105, 274.CrossRefGoogle Scholar
Thomson, C. D. & Robinson, M. F. (1980). Am. J. clin. Nutr. 33, 303.CrossRefGoogle Scholar
Van Hubbard, S., Barbero, G. & Chase, H. P. (1980). J. Pediat. 96, 421.CrossRefGoogle Scholar
White, H. S. (1969). J. Am. diet. Ass. 55, 38.CrossRefGoogle Scholar
World Health Organization (1973). Tech. Rep. Ser. WHO no. 532.Google Scholar