Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T01:19:03.689Z Has data issue: false hasContentIssue false

Time-course of the change in blood pressure level in magnesium-deficient Wistar rats

Published online by Cambridge University Press:  09 March 2007

Pascal Laurant
Affiliation:
Laboratoire Physiologie, Pharmacologie et Nutrition Préventive Expérimentale, UFR Médecine et Pharmacie, Place St-Jacques, 25030, Besançon Cedex, France
Michel Dalle
Affiliation:
Laboratoire de Physiologie Animale, Université Blaise Pascal, 63000, Clermont-Ferrand, France
Alain Berthelot
Affiliation:
Laboratoire Physiologie, Pharmacologie et Nutrition Préventive Expérimentale, UFR Médecine et Pharmacie, Place St-Jacques, 25030, Besançon Cedex, France
Yves Rayssiguier*
Affiliation:
CRNH d’Auvergne, INRA, Unité Maladies Métaboliques et Micronutriments, Theix, 63122, Saint Genès Champanelle, France
*
*Corresponding author: Dr Yves Rayssiguier, fax +33 4 73 62 46 38, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To investigate the relationships between maternal, umbilical cord and piglet fatty acid status, multiparous sows (six per diet) were fed on diets containing supplements (30 g/kg) of either soyabean oil or tuna oil for the last 21 d of pregnancy. The proportions of most fatty acids differed between diets: in particular, the tuna-oil-containing diet supplied more 22:6n-3 and less 18:2n-6 fatty acids than the soyabean-oil-containing diet. Maternal plasma fatty acid concentrations (mg/l) were greater than those in umbilical plasma and 20:4n-6 and 22:6n-3 fatty acids were present in higher proportions (g/100 g fatty acids) in umbilical than maternal plasma. Feeding tuna oil increased the proportionate amounts (g/100 g fatty acids) of total n-3 fatty acids (particularly 22:6n-3) in umbilical cord, plasma and piglet tissues compared with feeding soyabean oil: in contrast, the proportion of 20:4n-6 was decreased by feeding tuna oil. Changes in piglet fatty acid proportions as a result of oil feeding were not influenced by piglet weight. While proportions of the long-chain n-3 and n-6 polyunsaturated fatty acids in piglet liver, spleen and reproductive tract (ovaries plus uterus of the female, testes of the male) correlated well with those of umbilical plasma, those in brain and retina were poorly correlated. Therefore umbilical plasma cannot be used to predict the fatty acid status of piglet brain.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1999

References

Altura, BM & Altura, BT (1995) Role of magnesium in the pathogenesis of hypertension updated: relationship to its actions on cardiac, vascular smooth muscle, and endothelial cells. In Hypertension: Pathophysiology, Diagnosis, and Management, 2nd ed., pp. 12131242 [Laragh, JH and Brenner, BM, editors]. New York, NY: Raven Press Ltd.Google Scholar
Altura, BM, Altura, BT, Gebrewold, A, Ising, H & Günther, T (1984) Magnesium-deficiency and hypertension: correlation between magnesium deficient diets and microcirculatory changes in situ. Science 223, 13151317.CrossRefGoogle ScholarPubMed
Altura, BM, Altura, BT, Gebrewold, A, Ising, H & Günther, T (1992) Noise-induced hypertension and magnesium in rats: relationship to microcirculation and calcium. Journal of Applied Physiology 72, 194202.CrossRefGoogle ScholarPubMed
Altura, BT, Brust, M, Bloom, S, Barbour, RL, Stempak, JG & Altura, BM (1990) Magnesium dietary intake modulates blood lipid levels and atherogenesis. Proceedings of the National Academy of Sciences USA 87, 18401844.CrossRefGoogle ScholarPubMed
Astier, C, Rock, E, Lab, C, Gueux, E, Mazur, A & Rayssiguier, Y (1996) Functional alterations in sarcoplasmic reticulum membranes of magnesium-deficient rat skeletal muscle as consequences of free radical-mediated process. Free Radical Biology and Medicine 20, 667674.CrossRefGoogle ScholarPubMed
Atarashi, K, Matsuoka, H, Takagi, M & Sugimoto, T (1989) Magnesium ion: a possible physiological regulator of aldosterone production. Life Science 44, 14831489.CrossRefGoogle Scholar
Berthelot, A & Esposito, J (1983) Effects of dietary magnesium on the development of hypertension in the spontaneously hypertensive rat. Journal of the American College of Nutrition 4, 345353.Google Scholar
Bilato, C & Crow, MT (1996) Atherosclerosis and the vascular biology of aging. Aging Clinical Experimental Research 8, 221234.Google ScholarPubMed
Bussière, L, Mazur, A, Gueux, E & Rayssiguier, Y (1994) Hypertriglyceridemic serum from magnesium-deficient rats induces proliferation and lipid accumulation in cultured vascular smooth muscle cells. Journal of Nutritional Biochemistry 5, 585590.CrossRefGoogle Scholar
Cantin, M (1970) Relationship of juxtaglomerular apparatus and changes in magnesium deficiency. Laboratory Investigation 22, 558568.Google ScholarPubMed
Cohen, ML & Berkowitz, BA (1976) Vascular contraction: effect of age and extracellular calcium. Blood Vessels 13, 139154.Google ScholarPubMed
Corica, F, Allegra, A, Ientile, R, Buemi, M, Cucinotta, G, Bonanzinga, S & Ceruso, D (1996) Effects of the intravenous magnesium administration on aldosterone and atrial natriuretic factor plasma concentration. Nephron 73, 739741.Google Scholar
Dupont, J & Sassard, J (1974) Vascular reactivity in spontaneously hypertensive, normotensive and hypotensive rats. British Journal of Pharmacology 50, 185188.CrossRefGoogle ScholarPubMed
Durlach, J, Durlach, V, Rayssiguier, Y, Bara, M & Guiet-Bara, A (1992) Magnesium and blood pressure. II. Clinical studies. Magnesium Research 5, 147153.Google ScholarPubMed
Durlach, J, Poenaru, J, Rouhani, S, Bara, M & Guiet-Bara, A (1987) The control of central neural hyperexcitability in magnesium deficiency. In Nutrients and Brain Function, pp. 7881 [Essman, WB, editor]. Basel: Karger.Google Scholar
Evans, GH, Weaver, CM & Harrington, DD (1989) Dietary magnesium does not affect blood pressure in spontaneously hypertensive rats. Clinical and Experimental Hypertension Theory and Practice A11, 619632.CrossRefGoogle Scholar
Feletou, M, Moreau, N, Boulanger, M & Duhault, J (1993) Effect of aging and drug-induced weight reduction of rat vascular reactivity. Journal of Cardiovascular Pharmacology 21, 120127.CrossRefGoogle ScholarPubMed
Folkow, B & Svanborg, A (1993) Physiology of cardiovascular aging. Physiological Reviews 73, 725764.CrossRefGoogle ScholarPubMed
Ginn, HE, Cade, R, McCallum, T & Fregley, M (1967) Aldosterone secretion in magnesium-deficient rats. Endocrinology 80, 969971.CrossRefGoogle ScholarPubMed
Günther, T, Ising, H, Babish, W & Vormann, J (1984) Magnesium intake and blood pressure of spontaneously hypertensive rats. Magnesium-Bulletin 6, 120124.Google Scholar
Guthrie, GP, McAllister, RG & Kotchen, TA (1983) Effect of intravenous and oral verapamil upon pressor and adrenal steroidgenic responses in normal man. Journal of Clinical Endocrinology and Metabolism 57, 339343.CrossRefGoogle Scholar
Hackenthal, E, Paul, M, Ganten, D & Taugner, R (1990) Morphology, physiology, and molecular biology of renin secretion. Physiological Reviews 70, 10671116.CrossRefGoogle Scholar
Haudenschild, CC & Chobanian, AV (1984) Blood pressure lowering diminishes age-related changes in the rat aortic intima. Hypertension 6, Suppl. 1, I-62I-68.CrossRefGoogle ScholarPubMed
Haudenschild, CC, Prescott, MF & Chobanian, AV (1981) Aortic endothelial and subendothelial cells in experimental hypertension and aging. Hypertension 3, Suppl. 1, I-48I-53.CrossRefGoogle ScholarPubMed
Ichihara, A, Suzuki, H & Saruta, T (1993) Effect of magnesium on the renin–angiotensin–aldosterone system in human subjects. Journal of Laboratory and Clinical Medicine 122, 432440.Google ScholarPubMed
Ising, H & Günther, T (1997) Suboptimal magnesium, noise-induced stress, aging and cardiovascular risk. Magnesium-Bulletin 19, 4245.Google Scholar
Itokawa, Y, Tanaka, C & Fujiwara, M (1974) Changes in body temperature and blood pressure in rats with calcium and magnesium deficiencies. Journal of Applied Physiology 37, 835839.CrossRefGoogle ScholarPubMed
Kafunding, JL, Chow, R & Catt, KJ (1979) The role of calcium in the stimulation of aldosterone production by adrenocorticotropin, angiotensin II, and potassium in isolated glomerulosa cells. Endocrinology 105, 327333.Google Scholar
Larivière, R, St-Louis, J & Schiffrin, EL (1989) Vasopressin receptors and inositol triphosphate production in blood vessels of spontaneously hypertensive rats. Canadian Journal of Physiology and Pharmacology 67, 232239.CrossRefGoogle ScholarPubMed
Laurant, P, Robin, S & Berthelot, A (1997) Magnesium deficiency increases vasoconstrictor activity without affecting blood pressure of aged spontaneously hypertensive rats. Magnesium Research 10, 107117.Google ScholarPubMed
Luthringer, C, Rayssiguier, Y, Gueux, E & Berthelot, A (1988) Effect of moderate magnesium deficiency on serum lipids, blood pressure and cardiovascular reactivity in normotensive rats. British Journal of Nutrition 59, 243250.CrossRefGoogle ScholarPubMed
McKenna, TM (1990) Prolonged exposure of rat aorta to low levels of endotoxin in vitro results in impaired contractility. Association with vascular cytokine release. Journal of Clinical Investigation 86, 160168.CrossRefGoogle ScholarPubMed
Maier, JAM, Malpuech-Brugère, C, Rock, E, Rayssiguier, Y & Mazur, A (1997) Serum from magnesium-deficient rats affects endothelial cells in culture: role of hyperlipemia and inflammation. Journal of Nutritional Biochemistry 9, 1722.CrossRefGoogle Scholar
Mak, IT, Komarov, AM, Wagner, TL, Stafford, RE, Dickens, BF & Weglicki, WB (1996) Enhanced NO production during magnesium deficiency and its role in mediating red blood cell glutathione loss. American Journal of Physiology 271, C385C390.CrossRefGoogle ScholarPubMed
Nadler, JL, Buchanan, T, Natarajan, R, Antonipillai, I, Bergman, R & Rude, R (1993) Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 21, (2), 10241029.CrossRefGoogle ScholarPubMed
Nassir, F, Mazur, A, Giannoni, F, Gueux, E, Davidson, O & Rayssiguier, Y (1995) Magnesium deficiency modulates hepatic lipogenesis and apolipoprotein gene expression in the rat. Biochimica et Biophysica Acta 1257, 125132.CrossRefGoogle ScholarPubMed
Overlack, A, Zenzen, JG, Ressel, C, Müller, HM & Stumpe, KO (1987) Influence of magnesium on blood pressure and the effect of nifedipine in rats. Hypertension 9, 139143.CrossRefGoogle ScholarPubMed
Quinn, ST & Williams, GH (1988) Regulation of aldosterone secretion. Annual Review of Physiology 50, 409426.CrossRefGoogle ScholarPubMed
Rayssiguier, Y & Gueux, E (1985) Magnesium and lipids in cardiovascular disease. Journal of the American College of Nutrition 5, 507519.CrossRefGoogle Scholar
Rayssiguier, Y, Gueux, E, Bussière, L, Durlach, J & Mazur, A (1993) Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. Journal of the American College of Nutrition 12, 133137.CrossRefGoogle ScholarPubMed
Rayssiguier, Y, Malpuech, C, Nowacki, W, Rock, E, Gueux, E & Mazur, A (1997) Inflammatory response in magnesium deficiency. In Advances in Magnesium Research: 1. Magnesium in Cardiology, Suppl. 1 Magnesium Research, pp. 415421 [Smetana, R, editor]. London: John Libbey & Co Ltd.Google Scholar
Rayssiguier, Y, Mazur, A, Gueux, E & Rock, E (1996) Magnesium deficiency affects lipid metabolism and atherosclerosis process by a mechanism involving inflammation and oxidative stress. In Current Research in Magnesium, pp. 251255 [Halpern, MJ and Durlach, J, editors]. London: John Libbey & Co Ltd.Google Scholar
Rayssiguier, Y, Mbega, JD, Durlach, V, Gueux, E, Durlach, J, Giry, J, Dalle, M, Mazur, A, Laurant, P & Berthelot, A (1992) Magnesium and blood pressure. I. Animal studies. Magnesium Research 5, 139146.Google ScholarPubMed
Rock, E, Astier, C, Lab, C, Malpuech, C, Nowacki, W, Gueux, E, Mazur, A & Rayssiguier, Y (1995) Magnesium deficiency in rats induces a rise in plasma nitric oxide. Magnesium Research 8, 237242.Google ScholarPubMed
Ryan, JW, Chung, A, Ammons, C & Carlton, ML (1977) A simple radioassay for angiotensin-converting enzyme. Biochemical Journal 167, 501504.CrossRefGoogle ScholarPubMed
Safwate, A, Kati-Coulibalis, S, Davicco, MJ, Giry, J & Barlet, JP (1991) Renin–aldosterone system and arginine vasopressin in diarrhoeic calves. British Veterinary Journal 147, 533537.CrossRefGoogle ScholarPubMed
Shivakumar, K & Prakash Kumar, B (1997) Magnesium deficiency enhances oxidative stress and collagen synthesis in vivo in the aorta of rats. International Journal of Biochemistry and Cell Biology 29, 12731278.CrossRefGoogle ScholarPubMed
Solounias, MB & Schwartz, R (1975) The effect of magnesium deficiency on serum aldosterone in rats fed two levels of sodium. Life Science 17, 12111218.CrossRefGoogle ScholarPubMed
Tongyai, S, Rayssiguier, Y, Motta, C, Gueux, E, Maurois, P & Heaton, FW (1989) Mechanism of the increased erythrocyte membrane fluidity during magnesium deficiency in weanling rats. American Journal of Physiology 257, C270C276.CrossRefGoogle ScholarPubMed
Van de Voorde, J & Leusen, I (1983) Role of the endothelium in the vasodilator response of rat thoracic aorta to histamine. European Journal of Pharmacology 87, 113120.CrossRefGoogle ScholarPubMed
Vane, JRÄnggard, EE & Botting, RM (1990) Regulatory function of the vascular endothelium. New England Journal of Medicine 323, 2736.Google ScholarPubMed
Weglicki, WB, Mak, IT, Kramer, JH, Dickens, BF, Cassidy, MM, Stafford, RE & Phillips, TM (1996) Role of free radicals and substance P in magnesium deficiency. Cardiovascular Research 31, 677682.CrossRefGoogle ScholarPubMed
Weglicki, WB, Phillips, TM, Freedman, AM, Cassidy, MM & Dickens, BF (1992) Magnesium deficiency elevates circulating levels of inflammatory cytokines and endothelin. Molecular Cell Biochemistry 118, 105111.CrossRefGoogle Scholar
Yang, BC, Li, DY, Weng, YF, Lynch, J, Wingo, CS & Mehta, JL (1998) Increased superoxide anion generation and altered vasoreactivity in rabbits on low-potassium diet. American Journal of Physiology 274, H1955H1961.Google ScholarPubMed