Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T13:28:51.519Z Has data issue: false hasContentIssue false

Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis

Published online by Cambridge University Press:  09 March 2007

Peter J. Reeds
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Susan M. Hay
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Patricia M. Dorwood
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Robert M. Palmer
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Young rats were offered to appetite a semi-synthetic diet either alone or containing the β2-selective agonist clenbuterol (4-amino-α[t-butylamino) methyl]-3, 5-dichlorobenzyl alcohol).

3. Male rats (starting weight 53 g) received clenbuterol at a daily oral dose of 200 pg/kg body-weight per d. Animals were slaughtered after 0, 4, 8, 11, 18, 21 and 25 d of treatment. At 4, 11, 21 and 25 d muscle protein synthesis was measured by the method of Garlick et al. (1980). Although clenbuterol increased the rate of protein and RNA accretion in gastrocnemius and soleus muscles, protein synthesis was not increased.

4. The results suggested that the drug had a rapid, perhaps direct, inhibitory effect on protein degradation. It is concluded that the growth-promoting effect of clenbuterol may be specific to muscle and that the drug may act in a novel manner which circumvents the physiological mechanisms responsible for the control of muscle growth.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Baker, P. K., Dalrymple, R. H., Ingle, D. L. & Ricks, C. A. (1983). Federation Proceedings 42, Abstract 3069.Google Scholar
Baker, P. K., Dalrymple, R. H., Ingle, D. L. & Ricks, C. A. (1984). Journal of Animal Science 59, 12561261.CrossRefGoogle Scholar
Dalrymple, R. H., Ricks, C. A., Baker, P. K., Pensack, J. M., Gingher, P. E. & Ingle, D. L. (1983). Federation Proceedings 42, Abstract 668.Google Scholar
Deschaies, Y., Willemot, J. & Leblanc, J. (1981). Canadian Journal of Physiology and Pharmacology 59, 113121.CrossRefGoogle Scholar
Dulloo, A. G. & Miller, D. S. (1984). British Journal of Nutrition 52, 179196.CrossRefGoogle Scholar
Emery, P. W., Rothwell, N. J., Stock, M.. J. & Winter, P. D. (1984). Bioscience Reports 4, 8391.CrossRefGoogle Scholar
Garlick, P. J., Fern, E. B. & McNurlan, M. A. (1978). In Processing and Turnover of Proteins and Organelles in the cell, pp. 8594 [Rapoport, S. and Scheme, T., editors]. Oxford: Pergamon press.Google Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). Biochemical Journal 192, 719723.CrossRefGoogle Scholar
Goldspink, D. F., Garlick, P. J. & McNurlan, M. A. (1983). Biochemical Journal 210, 8998.CrossRefGoogle Scholar
Hill, J. M. & Malamud, D. (1974). FEBS Letters 46, 308314.CrossRefGoogle Scholar
Kern, O. (1977). Tierarztliche Umschau 32, 245253.Google Scholar
Lands, A. H., Arnold, A., McAuliff, J. P., Luduena, F. P. & Brown, T. G. Jr (1967). Nature 214, 597598.CrossRefGoogle Scholar
Li, J. B. & Jefferson, L. S. (1977). American Journal of Physiology 232, E243E249.Google Scholar
Lobley, G. E., Connel, A., Galbraith, H., Harris, C. I., Milne, G. & McDiarmid, R. (1983). In Protein Metabolism and Nutrition, vol. 2, pp. 6972 [Pion, R., Arnal, M. and Bonin, P., editors]. European Association for Animal Production Publication no. 21.Google Scholar
Lobley, G. E., Smith, J. S., Mollison, G., Connel, A. & Galbraith, H. (1982). Proceedings of the Nutrition Society 41, 28A.Google Scholar
McNurlan, M. A., Fern, E. B. & Garlick, P. J. (1982). Biochemical Journal 204, 831838.CrossRefGoogle Scholar
Palmer, R. M., Bain, P. A. & Reeds, P. J. (1985). Biochemical Journal 230, 117123.CrossRefGoogle Scholar
Pullar, J. D. & Webster, A. J. F. (1977). British Journal of Nutrition 37, 355363.CrossRefGoogle Scholar
Ricks, C. A., Dalrymple, R. H., Baker, D. K. & Ingle, D. L. (1984). Journal of Animal Science 59, 12471255.CrossRefGoogle Scholar
Rodemann, H. P. & Goldberg, A. L. (1982). Journal of Biological Chemistry 257, 16321638.CrossRefGoogle Scholar
Rothwell, N. J., Stock, M. J. & Winter, P. D. O'B. (1983 a). Proceedings of the Nutrition Society 43, 71A.Google Scholar
Rothwell, N. J., Stock, M. J. & Winter, P. D. O'B. (1983 b). Journal of Physiology 340, 62P.Google Scholar
Sinett-Smith, P. A., Dumelow, N. W. & Buttery, P. J. (1983). British Journal of Nutrition 50, 225234.CrossRefGoogle Scholar
Vernon, B. G. & Buttery, P. J. (1976). British Journal of Nutrition 36, 575579.CrossRefGoogle Scholar
Vernon, B. G. & Buttery, P. J. (1978). British Journal of Nutrition 40, 563572.CrossRefGoogle Scholar
Yamazaki, N., Hosoki, R. & Takayanagi, I. (1984). Genetic Pharmacology 15, 345348.CrossRefGoogle Scholar